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Dual Adversarial Transfer for Sequence Labeling
Joey Tianyi Zhou, Hao Zhang, Di Jin and Xi Peng

Abstract—We propose a new architecture for addressing sequence labeling, termed Dual Adversarial Transfer Network (DATNet).
Specifically, the proposed DATNet includes two variants, i.e., DATNet-F and DATNet-P, which are proposed to explore effective feature
fusion between high and low resource. To address the noisy and imbalanced training data, we propose a novel Generalized Resource-
Adversarial Discriminator (GRAD) and adopt adversarial training to boost model generalization. We investigate the effects of different
components of DATNet across different domains and languages, and show that significant improvement can be obtained especially
for low-resource data. Without augmenting any additional hand-crafted features, we achieve state-of-the-art performances on CoNLL,
Twitter, PTB-WSJ, OntoNotes and Universal Dependencies with three popular sequence labeling tasks, i.e. Named entity recognition
(NER), Part-of-Speech (POS) Tagging and Chunking.

Index Terms—Sequence labeling, named entity recognition, chunking, part-of-speech tagging, transfer learning, natural language
processing, adversarial training.

F

1 INTRODUCTION

S Equence labeling is one type of fundamental pattern recogni-
tion task that involves the automatic assignment of a categor-

ical label to each member of a sequence of observed values. This
occurs in a number of applications of natural language processing
(NLP), bioinformatics, and so on. For example, in document
analysis, part of speech (POS) tagging seeks to assign a part of
speech to each word (token) in an input sentence or document,
e.g., noun, verb, adjective. Named entity recognition (NER) or
called entity identification is a sub-task of information extraction
which aims to locate and classify elements of texts into pre-defined
categories such as the names of persons, organizations, locations
and so on. As for genetic databases, researchers seek to build the
prediction model for assigning values, e.g., A, G, C and T, to each
nucleotide in DNA sequences [1].

The sequence labeling, especially for NLP tasks such as NER,
is usually required to detect not only the type of the element,
but also the element boundaries. To the end, it is necessary
to deeply understand the contextual semantics to disambiguate
the different types of same element. To tackle this challenging
problem, most early studies were based on hand-crafted rules,
which show sub-optimal performance in practice. To achieve
better result, some efforts are devoted to developing learning
based algorithms, especially neural network based methods, and
the state-of-the-art have been consecutively advanced [2]–[7].
These end-to-end models generalize well on new elements based
on features which are automatically learned from the training data.
However, when the annotated training data is small, especially in
the low resource scenario [8], the performance of these methods
significantly degrades since the hidden feature representations
cannot be adequately learned.

Recently, more and more approaches have been proposed to
address low-resource sequence labeling. Early works [9], [10]
primarily assumed a large parallel corpus and focused on exploit-
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ing them to project information from high resource to low one.
Unfortunately, such a large parallel corpus may be unavailable
for many low-resource languages. More recently, cross-resource
word embedding [11]–[13] was proposed to bridge the low and
high resources and enable knowledge transfer. Although the afore-
mentioned transfer-based methods show promising performance in
low-resource sequence labeling, there are two issues deserved to
be further investigated on:

1) Representation Difference they did not consider the
representation difference across resources and enforced
the feature representation to be shared across lan-
guages/domains.

2) Resource Data Imbalance the training size of high-
resource is usually much larger than that of low-resource.

Almost all existing methods neglect the difference in their models,
thus resulting in poor generalization.

In this work, we present a novel approach termed Dual
Adversarial Transfer Network (DATNet) to address the above
issues in a unified framework for low-resource NLP sequence
labeling. Specifically, to handle the representation difference, we
first investigate two architectures of hidden layers (we use bi-
directional long-short term memory (BiLSTM) model as hidden
layer) for transfer. The first architecture is that all the units in
hidden layers are common units shared across languages/domains.
The second one is composed of both private and common units,
where the private part preserves the independent language/domain
information. Extensive experiments are conducted to show their
advantages over each other in different situations. On the top
of common units, the adversarial discriminator (AD) loss is
introduced to encourage the resource-agnostic representation so
that the knowledge from high resource can be more compatible
with low resource. To handle the imbalance issue of data resource,
we further propose a variant of the AD loss, termed General-
ized Resource-Adversarial Discriminator (GRAD), to impose the
resource weight during training so that low-resource and hard
samples can be paid more attention to. In addition, we create
adversarial samples to conduct the Adversarial Training (AT) for
further improving the generalization and alleviating over-fitting
problem. To achieve end-to-end training and obtain prominent
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improvements on a series of sequence labeling tasks especially
for low-resource data, we unify two kinds of adversarial learning,
i.e., GRAD and AT, into one transfer learning model, termed Dual
Adversarial Transfer Network (DATNet). With the help of the
pretrained language model, our method could advance state of
the art on several tasks. Different from prior works, we do not use
additional hand-crafted features and do not use cross-lingual word
embeddings, while addressing the cross-language tasks effectively.

2 RELATED WORK

Sequence Labeling Sequence labeling is a type of pattern recog-
nition task which aims at automatically assigning a categorical
label to each element of a sequence from free text. For example,
NER task tries to detect named entities (e.g. person, organization,
and location) in the text. The early works applied CRF, SVM, and
perception models with hand-crafted features [14]–[16]. With the
development of deep learning, the research focus has been shifting
towards deep neural networks (DNN), which requires little feature
engineering and domain knowledge [4], [17], [18]. Collobert et
al. [2] proposed a feed-forward neural network with a fixed sized
window for each word, which failed in considering useful relations
between long-distance words. To overcome this limitation, Chiu
et al. [5] presented a bidirectional LSTM-CNNs architecture that
automatically detects character- and word-level features. Ma et
al. [6] further extended it into bidirectional LSTM-CNNs-CRF
architecture, where the CRF module was added to optimize the
output label sequence. Liu et al. [19] proposed task-aware neural
language model termed LM-LSTM-CRF, where character-aware
neural language models were incorporated to extract character-
level embedding under a multi-task framework.

Transfer Learning Transfer learning is a powerful tool
of sequence labeling, especially for the low-resources tasks.
To bridge the resource differences in domains, languages and
high/low resource scenario, transfer learning methods for sequence
labeling could be divided into following two categories: the
parallel corpora based transfer and the shared representation based
transfer. Early works mainly focused on exploiting parallel corpora
to project information between the high- and low-resource lan-
guage [9], [10], [20]–[22]. For example, Chen et al. [9] and Feng
et al. [21] proposed to jointly identify and align bilingual named
entities. On the other hand, the shared representation methods do
not require the parallel correspondence [23]. For instance, Fang
et al. [11] proposed cross-lingual word embeddings to transfer
knowledge across resources. Yang et al. [13] presented a transfer
learning approach based on a deep hierarchical recurrent neural
network (RNN), where the full/partial hidden features between
source and target tasks are shared. Ni et al. [24], [25] utilized the
Wikipedia entity type mappings to improve low-resource NER.
Al-Rfou et al. [26] built massive multilingual annotators with
minimal human expertise by using language agnostic techniques.
Mayhew et al. [27] created a cross-language sequence tagging
system, which works well for very minimal resources by translat-
ing annotated data of high-resource into low-resource. Cotterell et
al. [28] proposed character-level neural CRFs to jointly train and
predict low- and high-resource languages. Pan et al. [29] proposes
a large-scale cross-lingual named entity dataset which contains
282 languages for evaluation. In addition, multi-task learning
[30]–[36] shows that jointly training on multiple tasks/languages
helps improve performance. Different from transfer learning meth-
ods, multi-task learning aims at improving the performance of all

the resources instead of low resource only. Most recently, more
and more works [37]–[42] focus on building general language
model to learn informatively contextualized features from large-
scale language corpus and improve their generalization ability for
various tasks through unsupervised or supervised learning.

Adversarial Learning Adversarial learning originates from
Generative Adversarial Network (GAN) [43], which shows
promising performance in computer vision. Recently, many works
have tried to apply adversarial learning to NLP tasks. Chen et
al. [44] proposed an adversarial deep averaging network for senti-
ment classification task, which transfers the knowledge learned
from the labeled data on a resource-rich source language to
low-resource languages where only unlabeled data exists. Liu et
al. [45] presented an adversarial multi-task learning framework
for text classification. Gui et al. [46] applied the adversarial dis-
criminator to POS tagging for Twitter. Kim et al. [47] proposed a
language discriminator to enable language-adversarial training for
cross-language POS tagging. Chen et al. [48] built a multinomial
adversarial network to tackle the text classification problem in the
real-world multi-domain setting. Besides adversarial discrimina-
tor, adversarial training is another concept originally introduced
by [49], [50] to improve the robustness of image classification
model by injecting malicious perturbations into input images.
Recently, Miyato et al. [51] proposed a semi-supervised text
classification method by applying adversarial training, where the
adversarial perturbations were added onto word embeddings for
the first time. Yasunaga et al. [52] applied adversarial training
to POS tagging. Different from all these adversarial learning
methods, our method integrates both the adversarial discriminator
and adversarial training in an unified framework to enable end-to-
end training.

3 DUAL ADVERSARIAL TRANSFER NETWORK

In this section, we introduce DATNet in more details. We first
describe a base model for NER, and then discuss the proposed
two transfer architectures for DATNet.

3.1 Basic Architecture

We follow state-of-the-art models for sequence labeling task [3]–
[6], i.e., LSTM-CNNs-CRF based structure, to build the base
model. It consists of the following pieces, i.e., character-level
embedding, word-level embedding, BiLSTM for feature represen-
tation, and CRF as the decoder. The character-level embedding
takes a sequence of characters in the word as atomic units input
to derive the word representation that encodes the morphological
information, such as root, prefix, and suffix. These character
features are usually encoded by character-level CNN or BiLSTM,
then concatenated with word-level embedding to form the final
word vectors. On the top of them, the network further incorporates
the contextual information using BiLSTM to output new feature
representations, which is subsequently fed into the CRF layer
to predict label sequence. Although both of the word-level layer
and the character-level layer can be implemented using CNNs or
RNNs, we use CNNs for extracting character-level and RNNs for
extracting word-level representation. Fig. 1(a) shows the architec-
ture of the base model.
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Fig. 1. The general architecture of proposed models.

3.2 Dual Adversarial Transfer Architecture

3.2.1 Character-level Encoder

Previous works have shown that character features can boost
sequence labeling performance by capturing morphological and
semantic information [35]. To obtain high-quality word features
from the low-resource dataset, character features learned from
other language/domain may provide crucial information for label-
ing, especially for rare and out-of-vocabulary words. Character-
level encoder usually contains BiLSTM [4] and CNN [5], [6]
approaches. In practice, Reimers et al. [53] observed that the
difference between the two approaches is statistically insignificant
in the sequence labeling tasks, but character-level CNN is more
efficient and has less parameters. Thus, we use character-level
CNN and share character features between high- and low-resource
tasks to enhance the representations of low-resource.

3.2.2 Word-level Encoder

To learn a better word-level representation, we concatenate
character-level features of each word with a latent word embed-
ding as wi = [wchar

i ,wemb
i ], where the latent word embed-

ding wemb
i is initialized with pre-trained embeddings and fixed

during training. One characteristic of sequence labeling is that
the historical and future input for a given time step could be
useful for label inference. To exploit such a characteristic, we use
a bidirectional LSTM architecture [54] to extract contextualized
word-level features. In this way, we can gather the information
from the past and future for a particular time frame t as follows,−→
h t = lstm(

−→
h t−1,wt),

←−
h t = lstm(

←−
h t+1,wt). After the

LSTM layer, the representation of a word is obtained by con-
catenating its left and right context representation as follows,
ht = [

−→
h t,
←−
h t].

To consider the resource representation difference on word-
level features, we introduce two transferable word-level encoders
used in our model, namely DATNet-Full Share (DATNet-F) and
DATNet-Part Share (DATNet-P). In DATNet-F, all the BiLSTM
units are shared by all resources while word embeddings for differ-
ent resources are disparate. The illustrative figure is depicted in the
Fig. 1(c). Different from DATNet-F, the DATNet-P decomposes
the BiLSTM units into the shared component and the resource-
related one, which is shown in the Fig. 1(b).

3.2.3 Generalized Resource-Adversarial Discriminator
To achieve the compatibility between the feature representation
extracted from the source domain and those from the target
domain, we encourage the outputs of the shared BiLSTM part
to be resource-agnostic by constructing a resource-adversarial
discriminator, which is inspired by the Language-Adversarial Dis-
criminator proposed by [47]. Unfortunately, previous works did
not consider the imbalanced training size of two resources. Specif-
ically, the target domain consists of very few labeled training data,
e.g., 10 sentences. In contrast, labeled training data in the source
domain are much richer, e.g., 10k sentences. If such imbalance
was not considered during training, the stochastic gradient descent
(SGD) optimization would make the model biased to high resource
[55]. To address this imbalance problem, we impose a weight
α on two resources to balance their influences. However, in the
experiment we also observe that the easily classified samples from
high resource comprise the majority of the loss and dominate the
gradient. To overcome this issue, we further propose Generalized
Resource-Adversarial Discriminator (GRAD) to enable adaptive
weights for each sample (note that the sample here means each
sentence of resource), which enables the model training focusing
on the hard samples.

In order to compute the loss of GRAD, the output sequences
of shared BiLSTM should be first encoded into a single vector,
i.e. sentence representation, and then fed into the discriminator.
The common way to create the sentence representation is either
using the final hidden state of BiLSTM or the max (or average)
pooling from the hidden states. Unfortunately, most of these
approaches fail to carry the semantics along the long sequences of
a recurrent model [56]. To overcome this challenge, self-attention
mechanism [57] could be a feasible solution that utilizes all the
local information to construct the sentence representation. Specif-
ically, it computes the weighted summation of all hidden states
with different attention weights which indicate the contribution of
each hidden state to the whole sentence representation. Then the
single vector is projected into a scalar probability r via a linear
transformation and activation. The loss function of the resource
classifier is formulated as:

`GRAD =−
∑
i

{Ii∈DS
α(1− ri)γ log ri

+ Ii∈DT
(1− α)rγi log(1− ri)}

(1)
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where Ii∈DS
, Ii∈DT

are the identity functions to denote whether
a sentence is from high resource (source) and low resource
(target), respectively; α is a weighting factor to balance the loss
contribution from high and low resource. The parameter (1− ri)γ
(or rγi ) controls the loss contribution from individual samples
by measuring the discrepancy between prediction and true label
(easy samples have smaller contribution). γ ≥ 0 is a factor
that smoothly adjusts the rate at which easy examples are down-
weighted. Figure 2 illustrates how (1 − ri)

γ (or rγi ) controls
the loss contribution for individual samples. For example, for the
sample from the high resource DS , its corresponding loss term is
Ii∈DS

α(1 − ri)γ log ri, where the controlling factor (1 − ri)γ
is inverse proportion to ri. In other words, when ri → 1, this
well-classified sample is down-weighted due to (1− ri)γ goes to
0. As γ increases, the approaching speed increases. In this case,
a large γ is preferred. For the sample from low resource data, a
small γ is preferred. Therefore, the value of γ should be carefully
selected to trade off the source and target data. In practice, γ = 2
always achieves the best performance as discussed in Section 4.5.
The resource classifier is optimized by minimizing the resource
classification error and the gradients originated from the loss are
back-propagated to other model parts. Then the gradient reversal
module negates the gradients for parameter updates such that the
bottom layers are trained to be resource-agnostic.
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Fig. 2. The effect of γ on sample weights.

3.2.4 Label Decoder
The label decoder induces a probability distribution over the
sequences of labels, conditioned on the word-level encoder fea-
tures. In this paper, we use a linear chain model based on
the first-order Markov chain structure, termed the chain con-
ditional random field (CRF) [58], as the decoder. In this de-
coder, there are two kinds of cliques: local cliques and transition
cliques. Specifically, local cliques correspond to the individual
elements in the sequence. On the other hand, the transition
cliques reflect the evolution of states between two neighboring
elements at time t − 1 and t and we define the transition
distribution as θ. Formally, a linear-chain CRF can be written
as p(y|h1:T ) = 1

Z(h1:T ) exp
{∑T

t=2 θyt−1,yt +
∑T
t=1 Wytht

}
,

where Z(h1:T ) is a normalization term and y is the sequence
of predicted labels as follows: y = y1:T . The parameters of our
model are optimized to maximize this conditional log likelihood,
which acts as the objective function of the model. We define
the loss function for the source and target resource as follows,
`S = −

∑
i log p(y|h1:T ), `T = −

∑
i log p(y|h1:T ).

3.2.5 Adversarial Training
So far our model can be trained in an end-to-end manner with the
standard back-propagation by minimizing the following loss:

` = `GRAD + `S + `T . (2)

Recent works have demonstrated that deep learning models are
fragile to adversarial examples [50], [52], [59]. Thus, adversarial
samples are widely incorporated into training to improve the gen-
eralization and robustness of the model, which is called adversarial
training (AT) [51]. It emerges as a powerful regularization tool to
stabilize training and enable the model to escape from the local
minimum. Recently, Yasunaga et al. [52] applied adversarial train-
ing to POS tagging. In this paper, we also explore AT in more tasks
of sequence labeling. To be specific, we prepare an adversarial
sample by adding the original sample with a perturbation bounded
by a small norm ε to maximize the loss function as follows:

ηx = arg max
η:‖η‖2≤ε

`(Θ;x + η) (3)

where Θ is the current model parameters set. However, we cannot
calculate the value of η exactly in general, because the exact
optimization with respect to η is intractable in neural networks.
Following the strategy in [50], [52], this value can be approxi-
mated by linearizing it as follows,

ηx = ε
g

‖g‖2
, where g = ∇`(Θ;x) (4)

where ε can be determined on the validation set. In this way, the
adversarial examples are generated by adding small perturbations
into the inputs along the direction that most significantly increases
the loss function of the model. We find such η against the current
model parameterized by Θ. Moreover, at each training step, we
construct an adversarial example via xadv = x + ηx. Noted that
we generate this adversarial example on the word and character
embedding layer, respectively, as shown in the Fig. 1(b) and 1(c).
Then, the classifier is trained on the mixture of original and
adversarial examples to improve the generalization. To this end,
we augment the loss in Eqn. 2 and define the loss function for
adversarial training via:

`AT = `(Θ;x) + `(Θ;xadv) (5)

where `(Θ;x), `(Θ;xadv) represents the loss from an original
example and its adversarial counterpart, respectively. Note that we
present the AT in a general form for ease of presentation. For
different samples, the loss and parameters should correspond to
their counterparts. For example, for the source data with word
embedding wS , the loss for AT can be defined as follows, `AT =
`(Θ;wS) + `(Θ;wS,adv) with wS,adv = wS + ηwS

and ` =
`GRAD + `S . Similarly, we can compute the perturbations ηc for
char-embedding and ηwT

for target word embedding.

4 EXPERIMENTS

In this section, we evaluate our DATNet method on various
benchmark sequence labeling tasks to demonstrate the effective-
ness comparing with other competing sequence labeling methods.
Furthermore, we study the performance of DATNet under different
transferring settings upon different datasets. Meanwhile, we also
incorporate state-of-the-art language model into our method to
boost the performance.

4.1 Datasets
For a comprehensive comparison, our experiment involves three
different sequence labeling tasks, namely, part-of-speech (POS)
tagging, chunking and named entity recognition (NER). We
conduct experiments on CoNLL [60]–[62], WNUT [63], PTB-
WSJ [64], OntoNotes [65] and Universal Dependencies (UD) [66]
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benchmark datasets as well as cross-lingual named tagging
datasets for 282 languages (CLNER) [29]. The statistics of the
benchmark datasets are described in Table 1. For CLNER datasets,
we choose 9 different lingual datasets in our experiment, as
summarized in Table 2. For UD datasets, we choose 21 different
lingual datasets to compare with other methods.

Typically, we divide the aforementioned datasets into three
groups for different experimental settings:

• CoNLL-2002 & 2003 and WNUT datasets are used to
study the transferring performance from the source to
the target by simulating various low-resource scenario.
Specially, CoNLL-2003 dataset is used as the source,
CoNLL-2002 datasets and WNUT datasets are used as
the target in cross-language and cross-domain settings,
respectively.

• CLNER contains the NER datasets in various language
families and branches, which cover from the most ma-
jor languages (like English) to minority languages (like
Marathi). We conduct experiments on these datasets to
investigate the transfer ability among different linguistic
families and branches of our method under low- and high-
resource scenarios. The UD dataset is also utilized in the
experiments for the part-of-speech tagging.

• CoNLL-2000 & 2003, CoNLL-2002 Dutch, PTB-WSJ,
OntoNotes and WNUT-2017 datasets are used to study the
performance of incorporating language model into DAT-
Nets. Specially, we choose the latest pre-trained models
ELMo [39] and BERT [40] for evaluation.

Unlike previous works [2], [5], [13], [33], [67], [68] that
introduced hand-crafted features (e.g. one-hot gazetteer and or-
thographic features) as the additional input for further boosting
performance, we do not adopt these hand-crafted features and only
use words and characters as inputs for our method.

4.2 Experimental Setup
We use 50-dimensional publicly available pre-trained word em-
beddings for English, Spanish and Dutch languages of CoNLL
and WNUT datasets in our experiments. The models are trained
by word2vec package on the corresponding Wikipedia articles
(2017-12-20 dumps) [35]. For the named entity datasets [29],
we use 300-dimensional pre-trained word embeddings trained
by fastText package on Wikipedia [69]. For the part-of-speech
datasets from UD, we use 64-dimensional pre-trained Polyglot
word embeddings [70] for fair comparison. The 30-dimensional
randomly initialized character embeddings are used for all the
datasets. We set the filter number as 20 for char-level CNN
and the dimension of hidden states of the word-level LSTM as
200 for both base model and DATNet-F. For DATNet-P, we set
the dimension for the source, share, and target LSTMs to 100.
Parameters optimization is performed by Adam optimizer [71]
with the gradient clipping of 5.0 and learning rate decay strategy.

We set the initial learning rate by β0 = 0.001 for all experi-
ments. At each epoch t, βt is updated by βt = β0/(1 + ρ × t),
where ρ is the decay rate with 0.05. To reduce over-fitting, we also
apply dropout [72] to the embedding layer and the output of the
LSTM layer, respectively.

4.3 Comparison with State-of-the-Art Results
In this section, we compare our approach with state-of-the-art
(SOTA) methods on a set of benchmark datasets. We first carry out

experiment on the CoNLL and WNUT datasets. In the experiment,
we exploit all the source data (i.e., CoNLL-2003 English NER)
and the target data to improve performance of a specific task. The
averaged results with the standard deviation over 10 repetitive runs
are summarized in Table 3, and we also report the best results on
each task for fair comparison with other SOTA methods. From
the results, one could observe that incorporating the additional
resource is helpful to improve performance. DATNet-P model
achieves the highest F1 score on CoNLL-2002 Spanish and second
F1 score on CoNLL-2002 Dutch dataset. Moreover, DATNet-F
model beats the other methods on WNUT datasets. Different from
other state-of-the-art models, DATNets do not use any addition
features1.

Table 4 summarizes the results of our methods under different
cross-language transfer settings and shows the comparison with
Cotterell et al. [28]. In this experiment, we study the trans-
ferability between languages not only from the same linguistic
family and branch, but also from different linguistic families
or branches. According to the results, DATNets outperform the
transfer learning method of Cotterell et al. [28] for both low-
and high-resource scenarios within the same linguistic family and
branch (i.e., in-family in-branch) transfer case. One could observe
that:

1) For the low-resource scenario, transfer learning signifi-
cantly improves the performance of target datasets within
both the same and different linguistic family or branch
(i.e., in/cross-family in/cross-branch), while the improve-
ments are more prominent for the in-family in-branch
case.

2) For the high-resource scenario, when the target language
data is sufficient, the improvement of transfer learning is
not as distinct as that for low-resource scenario under the
in-family in-branch case. We also find little improvement
by transferring knowledge from Arabic to either of Gali-
cian and Ukrainian. Since Arabic and Galician are from
totally different linguistic families, the improvement may
be limited by the great linguistic differences between the
source and target languages.

The experiment results on the UD multilingual part-of-speech
tagging datasets are given in Table 5. Our DATNets show distinct
improvements over the base model on all the 21 languages,
which outperforms the state-of-the-art methods on 16 different
languages. The overall performance of DATNet-F is comparable
to Yasunaga et al. [52], which achieves the SOTA performance on
the UD datasets. Moreover, DATNet-P achieves 0.21% absolute
improvement on the average accuracy. All the experiments in Ta-
ble 5 follow the cross-language transferring setting, and one could
observe that DATNet-P method always outperforms DATNet-F
method. The superior performance of DATNet-P may result from
language-specific features in the model architecture. In contrast,
DATNet-F only learns the language-agnostic features from both
source and target languages.

1. It is not sure whether Feng et al. [21] has incorporated the validation set
into training. And if we merge training and validation sets, we can push the F1
score to 88.71. In addition to the aforementioned features, Aguilar et al. [73]
also incorporated the International Phonetic Alphabet (IPA), phonological
features, and subword information to handle noisy text and out-of-vocabulary
(OOV) words.
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TABLE 1
Statistics of Benchmark Sequence Labeling Datasets.

Benchmark Task Language # Training Tokens (# Entities) # Dev Tokens (# Entities) # Test Tokens (# Entities)
PTB-WSJ POS English 912,344 131,768 129,654
OntoNotes POS English 1,088,503 147,724 152,728
OntoNotes NER English 1,088,503 (81,828) 147,724 (11,066) 152,728 (11,257)
WNUT-2016 NER English 46,469 (2,462) 16,261 (1,128) 61,908 (5,955)
WNUT-2017 NER English 62,730 (3,160) 15,733 (1,250) 23,394 (1,740)
CoNLL-2000 Chunking English 211,727 - 47,377
CoNLL-2002 NER Spanish 207,484 (18,797) 51,645 (4,351) 52,098 (3,558)
CoNLL-2002 NER Dutch 202,931 (13,344) 37,761 (2,616) 68,994 (3,941)
CoNLL-2003 NER English 204,567 (23,499) 51,578 (5,942) 46,666 (5,648)

TABLE 2
Statistics of Selected Named Entity Recognition Datasets from Pan et al. [29].

Language Resource Linguistic Family Linguistic Branch # Training Sentences # Dev Sentences # Test Sentences
Spanish (es) Source Indo-European Romance 10,000 - -
Galician (gl / gl-h) Target Indo-European Romance 100 / 10,000 1,000 1,000
Dutch (nl) Source Indo-European Germanic 10,000 - -
West Frisian (fy) Target Indo-European Germanic 100 1,000 1,000
Russian (ru) Source Indo-European Slavic 10,000 - -
Ukrainian (uk / uk-h) Target Indo-European Slavic 100 / 10,000 1,000 1,000
Hindi (hi) Source Indo-European Indo-Aryan 10,000 - -
Marathi (mr) Target Indo-European Indo-Aryan 100 1,000 1,000
Arabic (ar) Source Afro-Asiatic Semitic 10,000 - -

gl-h and uk-h denote the high-resource settings for Galician and Ukrainian respectively.

TABLE 3
Comparison with State-of-the-art Results in CoNLL and WNUT datasets (F1-score).

Mode Methods Additional Features CoNLL Datasets WNUT Datasets
POS Gazetteers Orthographic Spanish Dutch WNUT-2016 WNUT-2017

Mono-language
/domain

Gillick et al. [74] × × × 82.59 82.84 - -
Lample et al. [4] ×

√
× 85.75 81.74 41.77∗ 34.53∗

Partalas et al. [67]
√ √ √

- - 46.16 -
Limsopatham et al. [68] × ×

√
- - 52.41 -

Lin et al. [75]
√ √

× - - - 40.42

Our Base Model Best
Mean & Std × × × 85.53

85.35±0.15
85.55

85.24±0.21
44.96

44.37±0.31
35.20

34.67±0.34

Cross-language
/domain

Yang et al. [13] ×
√

× 85.77 85.19 47.19∗ 40.83∗

Ying et al. [35] ×
√

× 85.88 86.55 46.53∗ 40.79∗

Feng et al. [21]
√

× × 86.42 88.39 - -
Von et al. [76] ×

√
× - - - 40.78

Aguilar et al. [33]
√

×
√

- - - 41.86
Aguilar et al. [73]

√ √ √
- - - 45.55

DATNet-P Best
Mean & Std × × × 88.16

87.89±0.18
88.32

88.09±0.13
50.85

50.41±0.32
41.12

40.52±0.38

DATNet-F Best
Mean & Std × × × 87.04

86.79±0.20
87.77

87.52±0.19
53.43

53.03±0.24
42.83

42.32±0.32

The scores with “*” denote produced results by the corresponding official tools/codes.

4.4 Transfer Learning Performance

In this section, we investigate the improvements with transfer
learning under multiple low-resource settings on partial target
data. To simulate a low-resource setting, we randomly obtain some
subsets of target data with varying data ratio at 0.05, 0.1, 0.2, 0.4,
0.6, and 1.0. For example, 20, 748 training tokens are sampled
from the training set under a data ratio of r = 0.1 for the dataset
CoNLL-2002 Spanish NER (Cf. Table 1). The results for cross-
language and cross-domain transfer are shown in Fig. 3(a) and
3(b), respectively, where we compare the results with each part of
DATNet under various data ratios. From those figures, we have
the following observations:

1) Both adversarial training and adversarial discriminator
in DATNet consistently contribute to the performance
improvement;

2) The transfer learning component in the DATNet consis-
tently improves over the results of the base model and the
improvement margin is more distinct when the target data
ratio is lower.

Specifically, when the data ratio is 0.05, DATNet-P model outper-
forms the base model by more than 4% in F1-score on Spanish
NER. Furthermore, DATNet-F model improves around 13% abso-
lutely in F1-score compared to base model on WNUT-2016 NER.

In the second experiment, we further investigate DATNet on
the extremely low resource cases, e.g., the number of training
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TABLE 4
Results of Varying Cross-language Transfer Settings in [29] Datasets (F1-Score).

Language Transfer Strategy Cotterell et al. [28] Our Methods
Source Target Base Model Transfer Base Model DATNet-P DATNet-F

Dutch (nl) West Frisian (fy) In-Family & In-Branch 58.43 72.12 57.47 75.08 76.05
Hindi (hi) West Frisian (fy) In-Family & Cross-Branch - - 57.47 69.25 68.44
Arabic (ar) West Frisian (fy) Cross-Family & Cross-Branch - - 57.47 67.89 66.05
Hindi (hi) Marathi (mr) In-Family & In-Branch 39.02 60.92 43.55 68.55 64.87
Dutch (nl) Marathi (mr) In-Family & Cross-Branch - - 43.55 63.83 60.50
Arabic (ar) Marathi (mr) Cross-Family & Cross-Branch - - 43.55 63.28 59.76
Spanish (es) Galician (gl) In-Family & In-Branch 49.19 76.40 49.94 79.60 86.01
Hindi (hi) Galician (gl) In-Family & Cross-Branch - - 49.94 60.57 61.68
Arabic (ar) Galician (gl) Cross-Family & Cross-Branch - - 49.94 59.18 60.43
Spanish (es) Galician (gl-h) In-Family & In-Branch 89.42 89.46 92.78 93.14 93.02
Arabic (ar) Galician (gl-h) Cross-Family & Cross-Branch - - 92.78 92.63 92.21
Russian (ru) Ukrainian (uk) In-Family & In-Branch 60.65 76.74 61.48 79.02 80.76
Hindi (hi) Ukrainian (uk) In-Family & Cross-Branch - - 61.48 72.73 73.84
Arabic (ar) Ukrainian (uk) Cross-Family & Cross-Branch - - 61.48 71.55 72.24
Russian (ru) Ukrainian (uk-h) In-Family & In-Branch 87.39 87.42 93.29 93.62 93.51
Arabic (ar) Ukrainian (uk-h) Cross-Family & Cross-Branch - - 93.29 92.83 92.42
* Base model denotes the model is trained by using target language dataset only.

TABLE 5
Comparison with State-of-the-art Results in Universal Dependencies (UD) Part-of-speech Tagging Datasets (%).

Language Berend et al. [77] Plank et al. [78] Nguyen et al. [79] Yasunaga et al. [52] Base DATNet-P DATNet-F
bg Bulgarian 95.63 97.97 97.4 98.53 98.34 98.59 98.47
cs Czech 95.83 97.89 - 98.81 97.75 98.87 98.75
da Danish 93.32 96.35 95.8 96.74 96.38 96.82 96.46
de German 90.73 93.38 92.7 94.35 93.48 94.58 94.35
en English 93.47 95.16 94.7 95.82 95.42 95.94 95.69
es Spanish 94.69 95.74 95.9 96.44 96.41 96.80 96.64
eu Basque 90.63 95.51 93.7 94.71 94.47 95.15 94.92
fa Persian 96.11 97.49 96.8 97.51 97.00 97.64 97.38
fi Finnish 89.19 95.85 94.6 95.40 95.27 95.89 95.78
fr French 94.96 96.11 96.0 96.63 96.52 97.34 97.15
he Hebrew 95.28 96.96 - 97.43 97.22 97.46 97.32
hi Hindi 96.09 97.10 96.4 97.21 96.92 97.25 97.11
hr Croatian 93.53 96.82 - 96.32 96.56 97.18 97.12
id Indonesian 92.02 93.41 93.1 94.03 93.68 93.89 93.75
it Italian 96.28 97.95 97.5 98.08 98.02 98.23 98.10
nl Dutch 85.10 93.30 91.4 93.09 92.68 93.04 92.85
no Norwegian 95.67 98.03 97.4 98.08 97.57 98.01 97.77
pl Polish 93.95 97.62 96.3 97.57 97.35 97.95 97.80
pt Portuguese 95.50 97.90 97.5 98.07 97.60 97.92 97.71
sl Slovenian 92.70 96.84 97.1 98.11 97.50 98.17 98.05
sv Swedish 94.62 96.69 - 96.70 96.45 97.31 97.13
Avg. accuracy 93.59 96.40 95.55 96.65 96.31 96.86 96.68
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Fig. 3. Comparison with Different Target Data Ratio, where
AT stands for adversarial training, F(P)-Transfer denotes the
DATNet-F(P) without AT.

target sentences is 10, 50, 100, 200, 500 or 1,000. The setting is
quite challenging and fewer works have studied before. The results
are summarized in Table 6. We have two interesting observations2:

1) DATNet-F outperforms DATNet-P on cross-language
transfer when the target resource is extremely low, how-
ever, this situation is reversed when the target dataset size
is large enough (i.e., more than 100 sentences);

2) DATNet-F is generally superior to DATNet-P on cross-
domain transfer.

The factor for the first observation may be because DATNet-F
with more shared hidden units is more efficient than DATNet-P to
transfer knowledge when the data size is extremely small. For the
second observation, the possible reason is that the cross-domain

2. For other tasks/languages we have the similar observation, so we only
report CoNLL-2002 Spanish and WNUT-2016 Twitter results.
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transfer are in the same language, more knowledge is common
between the source and target domains, requiring more shared
hidden features to carry with these knowledge compared to cross-
language transfer. Therefore, for cross-language transfer with an
extremely low resource and cross-domain transfer, we suggest
using DATNet-F model for better performance. As for the cross-
language transfer with relatively more training data, DATNet-P
model shows better result.

TABLE 6
Experiments on Extremely Low Resource (F1-score).

Tasks CoNLL-2002 Spanish NER
# Target sentences 10 50 100 200 500 1000
Base 21.53 42.18 48.35 63.66 68.83 76.69
+ AT 19.23 41.01 50.46 64.83 70.85 77.91
+ P-Transfer 29.78 61.09 64.78 66.54 72.94 78.49
+ F-Transfer 39.72 63.00 63.36 66.39 72.88 78.04
DATNet-P 39.52 62.57 64.05 68.95 75.19 79.46
DATNet-F 44.52 63.89 66.67 68.35 74.24 78.56
Tasks WNUT-2016 Twitter NER
# Target sentences 10 50 100 200 500 1000
Base 3.80 14.07 17.99 26.20 31.78 36.99
+ AT 4.34 16.87 18.43 26.32 35.68 41.69
+ P-Transfer 7.71 16.17 20.43 29.20 34.90 41.20
+ F-Transfer 15.26 20.04 26.60 32.22 38.35 44.81
DATNet-P 9.94 17.09 25.39 30.71 36.05 42.30
DATNet-F 17.14 22.59 28.41 32.48 39.20 45.25

4.5 Ablation Study of DATNet
In the proposed DATNet, both GRAD and AT play important roles
in low resource NER. In this experiment, we further investigate
how GRAD and AT help transfer knowledge across different lan-
guages/domains. In the first experiment3, we used t-SNE [80] to
visualize the feature distribution of BiLSTM outputs without AD,
with the normal AD (GRAD without considering data imbalance)
and the proposed GRAD in Figure 4. From the figure, one could
see that the GRAD in DATNet makes the distribution of extracted
features from the source and target datasets much more similar by
considering the data imbalance, which indicates that the outputs
of BiLSTM are resource-invariant.

To better understand the working mechanism, Table 7 further
reports the quantitative performance comparison between models
with different components. We observe that GRAD shows the
stable superiority over the normal AD regardless of other com-
ponents. There are no always winner between DATNet-P and
DATNet-F on different settings. The DATNet-P architecture is
more suitable to cross-language transfer whereas DATNet-F is
more suitable to cross-domain transfer.

Moreover, adversarial training (AT) acts as a regularizer, which
is related to other regularization methods that add noise to data
such as dropout and its variants. Dropout is data-independent and
it randomly mutes neurons with a certain probability to reduce
overfitting. In contrast, AT is a data-driven regularization, which
generates adversarial examples by adding perturbations to the
inputs in the direction that most significantly increases the loss.
In this way, AT forces the model to adapt the noise and improves
its generalization ability. To further illustrate the superiority of
AT, we also compare AT with dropout by adding each of them

3. We used data ratio ρ = 0.5 for training model and randomly selected 10k
testing data for visualization.

TABLE 7
Quantitative Performance Comparison between Models with

Different Components.

Model F1-score Model F1-score
CoNLL-2002 Spanish NER

Base 85.35 +AT 86.12
+P-T (no AD) 86.15 +AT +P-T (no AD) 86.90
+F-T (no AD) 85.46 +AT +F-T (no AD) 86.17
+P-T (AD) 86.32 +AT +P-T (AD) 87.19
+F-T (AD) 85.58 +AT +F-T (AD) 86.38
+P-T (GRAD) 86.93 DATNet-P 88.16
+F-T (GRAD) 85.91 DATNet-F 87.04

WNUT-2016 Twitter NER
Base 44.37 +AT 47.41
+P-T (no AD) 47.66 +AT +P-T (no AD) 48.44
+F-T (no AD) 49.79 +AT +F-T (no AD) 50.93
+P-T (AD) 48.14 +AT +P-T (AD) 49.41
+F-T (AD) 50.48 +AT +F-T (AD) 51.84
+P-T (GRAD) 48.91 DATNet-P 50.85
+F-T (GRAD) 51.31 DATNet-F 53.43
* AT: Adversarial Training; P-T: P-Transfer; F-T: F-Transfer; AD: Adversar-

ial Discriminator; GRAD: Generalized Resource-Adversarial Discriminator.

into the word/char embedding layers of base model, respectively.
The results are summarized in Table 8, which demonstrate that
AT is more effective regularization and it always outperforms the
dropout.

TABLE 8
Comparison between AT and Dropout Regularizer.

Method CoNLL-2002 NER WNUT NER
Spanish Dutch 2016 2017

Base 85.35 85.55 44.37 34.67
Base + dropout 85.51 85.84 45.95 36.72
Base + AT 86.12 86.76 47.41 38.48

TABLE 9
Analysis of Maximum Perturbation εwT in AT with Varying Data

Ratio ρ (F1-score).

εwT 1.0 3.0 5.0 7.0 9.0
Ratio CoNLL-2002 Spanish NER
ρ = 0.1 75.90 76.23 77.38 77.77 78.13
ρ = 0.2 81.54 81.65 81.32 81.81 81.68
ρ = 0.4 83.62 83.83 83.43 83.99 83.40
ρ = 0.6 84.44 84.47 84.72 84.04 84.05

From the aforementioned results, one could know that AT
helps to enhance the overall performance by adding perturbations
into inputs with the limit of ε = 5, i.e., ‖η‖2 ≤ 5. In this
experiment, we further investigate how the target perturbation εwT

with the fixed source perturbation εwS
= 5 in AT affects knowl-

edge transfer and the results on Spanish NER are summarized
in Table 9. The results generally indicate that less training data
require a larger ε to prevent over-fitting, which further validates
the necessity of AT in the case of low resource data.

Figure 5 shows the mean and standard deviation score of both
DATNet-F and DATNet-P on CoNLL-2002 Spanish NER dataset
with different γ. One could observe that both DATNet-F and
DATNet-P achieve the best results when γ = 2. The experiments
on the other used datasets also support this observation, and thus
we give the recommendation of γ = 2 in practical use.

Finally, the discriminator weight α in GRAD and results are
summarized in Table 10. From the results, one could find that α is
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Fig. 4. The visualization of extracted features from shared bidirectional-LSTM layer. The left, middle, and right figures show the
results when no Adversarial Discriminator (AD), AD, and GRAD is performed, respectively. Red points correspond to the source
CoNLL-2003 English examples, and blue points correspond to the target CoNLL-2002 Spanish examples.

TABLE 10
Analysis of Discriminator Weight α in GRAD with Varying Data Ratio ρ (F1-score).

α 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Ratio CoNLL-2002 Spanish NER
ρ = 0.1 78.37 78.63 78.70 78.32 77.96 77.92 77.88 77.78 77.85 77.90 77.65 77.57 77.38 77.49 77.29
ρ = 0.2 80.99 81.71 82.18 81.57 81.53 81.55 81.44 81.25 81.32 81.16 81.02 81.16 80.63 80.79 80.54
ρ = 0.4 83.76 83.73 84.18 84.48 84.26 84.12 83.54 83.40 83.52 84.18 83.42 83.47 83.28 83.33 83.19
ρ = 0.6 85.18 85.24 85.85 85.68 85.84 86.10 85.71 85.74 85.42 85.60 85.20 85.40 85.26 85.24 84.98

TABLE 11
Comparison with State-of-the-art Language Models (%).

Method Chunking Named Entity Recognition POS Tagging
CoNLL-2000 CoNLL-2003 OntoNotes WNUT-2017 CoNLL-2002 Dutch OntoNotes PTB-WSJ

Liu et al. [19] 96.13 91.85 87.89∗ 39.61∗ 86.03∗ 97.66∗ 97.59
Peters et al. [37] 96.37 91.93 - - - - -
Peters et al. [39] 96.41∗ 92.22 88.25∗ 42.58∗ - 97.74∗ 97.68∗

Devlin et al. [40] 96.66∗ 92.40 88.76∗ 46.88∗ 89.55∗ 98.11∗ 97.69∗

Akbik et al. [41] 96.72 93.18 89.30 50.24 90.44 - 97.85
Base 94.71 91.23 87.75 35.20 85.55 97.61 97.49
Base + ELMo 96.50 92.21 88.80 43.93 - 97.83 97.70
Base + BERT 96.68 91.90 88.83 47.05 89.73 98.13 97.69
DATNet-P 95.70 91.63 88.15 41.12 88.32 97.69 97.57
DATNet-F 96.10 92.16 88.33 42.83 87.77 97.79 97.68
DATNet-P + ELMo 96.64 92.48 88.96 47.91 - 97.85 97.74
DATNet-F + ELMo 96.96 92.88 89.24 49.58 - 98.03 97.86
DATNet-P + BERT 96.93 92.45 89.56 50.25 91.20 98.25 97.74
DATNet-F + BERT 97.01 92.63 89.39 50.63 90.91 98.28 97.88

The scores with “*” denote produced results by the corresponding official tools/codes. Results with BERT-base in [40] are
reported for fair comparison.
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Fig. 5. Analysis of γ in GRAD on CoNLL-2002 Spanish NER.

directly proportional to the data ratio ρ. In other words, more target
training data requires larger α to achieve better performance, i.e.,
smaller 1− α to reduce training emphasis on the target domain.

4.6 Incorporate Language Model into DATNet

In this section, we further augment DATNets with pre-trained
language models and conduct experiments on six English se-
quence labeling tasks and one Dutch NER task. Different from
the preceding experiments [4], [21], [35], [74] which directly use
the pre-trained word embeddings as the input, we use pre-trained
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ELMo [39] and BERT [40] as the feature encoder4. Since BERT
could learn the contextual information from input sequence well,
we replace the bi-LSTM either of base model and DATNets with
feed-forward layer. Moreover, we replace the top CRF decoder
with a classifier layer, i.e., to achieve the consistency with the
BERT settings. Here we first feed the input sequences into the
language model to generate contextualized feature representations
and then use those features as the input of our models. We show
that our approach is able to beat or be comparable to a series
of SOTA methods5. The experimental results are summarized in
Table 11.

Since only the pre-trained English ELMo model is avail-
able, we use it on six English sequence labeling tasks except
Dutch dataset. From Table 11, we observe that there are 1.79%,
0.98% and 1.05% improvements with ELMo for base model on
CoNLL-2000 Chunk, CoNLL-2003 NER and OntoNotes NER,
respectively. It is interesting to note that ELMo improves the
performance of base model on WNUT-2017 NER by a large
performance margin, i.e., increases of 8.73% in F1-score. The per-
formance improvement on DATNets are also significant, namely
0.86% on CoNLL-2000 Chunk, 0.72% on CoNLL-2003, 0.91%
on OntoNotes NER and 6.75% on WNUT-2017 NER.

Comparing with ELMo, BERT appears to a more powerful tool
for natural language processing tasks. More specifically, BERT
has a more complex and deeper model structure, which is trained
on larger language corpus. In this experiment, we use BERT
for all the English and Dutch datasets. As shown in Table 11,
with the help of pre-trained BERT, DATNets further advances
the state-of-the-art performance on the sequence labeling tasks
and show distinct improvements over Akbik et al. [41]. BERT
is generally superior to ELMo except CoNLL-2003 dataset. For
example, DATNet-F+BERT achieves 50.63% on WNUT-2017
NER, which is with the improvements of 1.05% over DATNet-
F+ELMo, and DATNet-P+BERT obtains 91.20% on CoNLL-
2002 Dutch NER. Note that the reported results of BERT-base
on CoNLL-2003 English NER is 92.40% in [40]. Unfortunately,
our reproduced result of BERT base model is only 91.63%, which
is slightly lower than the reported results. Meanwhile, we notice
a very recent work [81] that is also fine-tuned the BERT on
the CoNLL-2003 NER task and only 91.07% F1-score could be
achieved. Therefore, we assume that some practical tricks used in
the original paper may not be publicly released or the environment
difference may lead to the performance difference.

From Table 11, one could also observe that DATNet-F ap-
proach is generally more suitable to the cross-domain transfer
while DATNet-P prefers the cross-language transfer after introduc-
ing the language model, which is also aligned with the discussion
in Section 4.5.

Generally, we see that with the help of language models, i.e.,
ELMo and BERT, significant improvements could be achieved for
both base and DATNet models on different tasks. Such an im-
provement also relies on the knowledge transferred from external
very large-scale language corpus. The result again supports the
effectiveness of transfer learning in solving low-resource sequence

4. The BERT-base model is used in our experiments. The pre-trained English
model and pre-trained multilingual model are used for the English sequence
labeling tasks and Dutch named entity recognition task, respectively.

5. For the experiments on CoNLL-2002 and WNUT-2017, we use CoNLL-
2003 as the source data; For the experiments on PTB-WSJ and CoNLL-2003,
OntoNotes is used as the source data; For the experiments on OntoNotes and
CoNLL-2000, PTB-WSJ is as the source data.

labeling tasks. It also explains why the improvement of using
language model on DATNets is slightly smaller than that of base
model not augmenting language models. Nevertheless, DATNet is
a general framework that can be adapted with existing language
models for further improvement.

5 CONCLUSION

In this paper we develop a transfer learning model DATNet for
sequence labeling tasks, which aims at addressing two problems
remained in existing works, namely representation difference and
resource data imbalance. To be specific, we introduce two variants
of DATNet, DATNet-F and DATNet-P, which can be chosen for
use according to the cross-language/domain user case and the tar-
get dataset size. To improve the model generalization, we propose
dual adversarial learning strategies, i.e., AT and GRAD. Extensive
experiments show the superiority of DATNet over existing models
and our method achieves significant improvements on the bench-
mark datasets. By incorporating language model, DATNet further
advances the state-of-the-art performance on several challenging
tasks.
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