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Learning With Annotation of Various Degrees
Joey Tianyi Zhou , Meng Fang , Hao Zhang, Chen Gong , Xi Peng ,

Zhiguo Cao , and Rick Siow Mong Goh

Abstract— In this paper, we study a new problem in the
scenario of sequences labeling. To be exact, we consider that the
training data are with annotation of various degrees, namely,
fully labeled, unlabeled, and partially labeled sequences. The
learning with fully un/labeled sequence refers to the standard
setting in traditional un/supervised learning, and the proposed
partially labeling specifies the subject that the element does not
belong to. The partially labeled data are cheaper to obtain
compared with the fully labeled data though it is less informative,
especially when the tasks require a lot of domain knowledge.
To solve such a practical challenge, we propose a novel deep
conditional random field (CRF) model which utilizes an end-
to-end learning manner to smoothly handle fully/un/partially
labeled sequences within a unified framework. To the best of
our knowledge, this could be one of the first works to utilize
the partially labeled instance for sequence labeling, and the
proposed algorithm unifies the deep learning and CRF in an end-
to-end framework. Extensive experiments show that our method
achieves state-of-the-art performance in two sequence labeling
tasks on some popular data sets.

Index Terms— Deep conditional random field (CRF), incom-
plete annotation, partially labeled data, sequence labeling.

I. INTRODUCTION

EXISTING machine learning methods could be roughly
grouped into three categories, i.e., supervised learn-

ing [1]–[8], semisupervised learning [9]–[13], and unsuper-
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Fig. 1. Example of partial labels: for the people who are not familiar with
New York may be unable to annotate “the Met” as the landmark, however, they
are able to annotate “the Statue of Liberty” and “the Empire State Building”
as landmarks. In consequence, such a common seeing phenomenon will lead
to the proposed partial annotations.

vised learning [14]–[16], [16]–[22]. The major difference
among them lies on the annotation degrees of training data.
To be specific, supervised learning requires that all training
data are annotated with labels. In contrast, unsupervised learn-
ing relaxes such a limitation and handles training data without
the help of annotation. Different from un/full supervised
learning, semisupervised learning assumes that only a part
of data is fully labeled, which has played a key role in the
machine learning community, thanks to less annotation efforts.

Different from the aforementioned learning schemes, this
paper relaxes the annotation assumptions adopted in existing
works and allows some data to receive partial annotations. Our
motivation comes from a lot of practical applications. To be
specific, sequence labeling aims at building a system to predict
the structured output for a given input, which has been applied
to numerous real-world applications including part-of-speech
tagging (POS) [23], named entity recognition (NER) [24],
speech recognition [25], and so on. Most existing sequence
labeling methods such as BiLSTM-CRF [23] follow fully
supervised learning setting, which usually use fully labeled
sequences to model the transition between different positions
in the sequence. Apart from labeled sequences, however,
we observe there exists another case in the sequence labeling,
termed partially labeled sequences. As shown in Fig. 1,
“I visited the Met, the Statue of Liberty, and the Empire State
Building yesterday.” For those people who are not familiar
with New York may be unable to annotate “the Met” as
the landmark while they are able to annotate “the Statue
of Liberty” and “the Empire State Building” as landmarks.
In this case, the annotated entity (“the Met”) might be missing
in a sentence. Clearly, the above-mentioned example can be
considered as neither a labeled sequence nor an unlabeled
sequence. To our surprise, this problem has been largely
ignored in existing literature.

Based on the above-mentioned observation, we propose a
novel learning setting, termed as learning with annotation of
various degrees (LAVD), which is remarkably different from
existing settings such as supervised, unsupervised, or semi-
supervised learning. Fig. 2 illustrates the difference between
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Fig. 2. Visual illustration of different settings. (a) Supervised learning.
(b) Semisupervised learning. (c) Unsupervised learning. (d) LAVD.

proposed LAVD and these learning paradigms. To be exact,
we aim at solving a sequence labeling task which assumes that
the training data simultaneously contain fully labeled, partially
labeled, and unlabeled data. To achieve LAVD, we propose a
new deep conditional random field, termed dCRF3 which is
a marriage of CRFs and neural networks with a novel objec-
tive function. The proposed objective function simultaneously
considers labeled, partially labeled and unlabeled sequences,
which is optimized in an end-to-end manner. The contribution
of this paper could be summarized as follows.

1) To the best of our knowledge, this could be one of first
works to define a more generalized problem of LAVD in
the scenario of sequence labeling. The hidden structures
can be learned through exploiting information shared
from unlabeled, partially labeled, and fully labeled data
in the proposed LAVD.

2) We propose a new model, termed as dCRF3, to achieve
the LAVD. Specifically, dCRF3 employs recurrent
neural networks (RNNs) to learn relevant high-level
features in an end-to-end manner. Furthermore, a new
objective function is specifically designed for LAVD.
Extensive experimental results show the remarkable
improvements over the state-of-the-art (SoA) sequence
labeling methods.

II. RELATED WORK

Our work is related to the following topics, i.e., weakly
supervised learning and sequence labeling which are briefly
introduced in this section.

A. Weakly Supervised Learning

Most SoA techniques such as convolutional neural net-
work [26]–[28] require using a large number of fully labeled
data to train model. In practice, however, it is a daunting
task to attain strong supervision information due to the high
cost of data labeling process. Therefore, more and more
attention shifts from fully supervised learning to weakly
supervised learning [11], [12]. According to the difference

in annotation, weakly supervised learning could be further
divided into the following three groups [29] (see Table I),
i.e., incomplete supervision, inexact supervision, and inac-
curate supervision. To be specific, incomplete supervision
requires a subset of training data is fully annotated and the
rests are without labels. To address this issue, semisupervised
learning is proposed. Inexact supervision is given with coarse-
level or ambiguous annotations [30]. Namely, instead of
receiving a set of instances which are individually labeled,
the learner receives a set of labeled bags, each containing
many instances. For example, for the gene-based disease
diagnosis [31], the expert requires judging whether some
combinations of single-nucleotide polymorphisms (SNPs) lead
to a disease, instead of knowing which one SNP is the
disease factor. To address this issue, multiinstance learning
is proposed. Inaccurate supervision means that some labels
are incorrect, which is common seeing in crowdsourcing [32],
[33].

The proposed LAVD is remarkably different from these
existing weakly supervised learning paradigms in the fol-
lowing two aspects. First, the annotation of data is differ-
ent. In detail, the partially annotation defined in our LAVD
specifies that a part of ground truth of some data points
is missing or undetermined as shown in Fig. 2. In contrast,
existing weakly supervised methods assume that all the data
points are either fully labeled or unlabeled, which consider the
annotation of the whole data set instead of each single data
point. Second, LAVD considers all kinds of labeled data in
a unified framework, namely, fully labeled, partially labeled,
and unlabeled. To solve such a complex and challenging
issue, we specifically design a deep learning-based method
(dCRF3) in sequence labeling. Note that some existing works
on learning with partially labeled sequence are quite highly
related to our setting. Specifically, Tsuboi et al. [34] proposed
training CRFs using incomplete annotations and [35] extended
it to alleviate the annotation efforts by utilizing the active
learning. Fernandes and Brefeld [36] devised a simple trans-
ductive loss-augmented perceptron to learn from inexpensive
partially annotated sequences. Different from these works,
in our LAVD setting, we consider three types of annotations
in a unified framework. In this way, these works can be con-
sidered as a special case in LAVD. In addition, different from
the mentioned works with hand-craft features, the proposed
dCRF3 are a deep learning-based method and enables the end-
to-end training, thus leading to the significant improvement in
performance.

B. Sequence Labeling

Sequence labeling including POS tagging and NER has
been studied for many years in NLP. Most early studies
were based on hand-crafted rules which have suffered from
degraded performance in practice. In recent, more and more
works have devoted to developing learning-based methods
to automatically induce sequence labeling, especially super-
vised methods. Supervised learning algorithms, e.g., hidden
Markov model (HMM) [37], support vector machine [38],
CRF [39], and neural networks [23], typically employ a system
to read a large-scale annotated training data, memorize a
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TABLE I

WEAK SUPERVISION SETTING COMPARISON

list of entities, and create disambiguation rules based on
discriminative features. Among them, CRFs and HMMs are
very popular and have achieved SoA performance in handling
sequential data [23], [39]. Comparing with generative models
(e.g., HMMs), discriminative models (e.g., CRFs) are usually
more powerful, which focus on maximizing the conditional
probability of the true label rather than modeling the joint
distribution. Thanks to impressive results achieved by CRFs,
it has been widely used for handling sequential data in
the scenario of natural language processing and biological
sequence analysis.

More recently, the huge success achieved by deep learn-
ing has inspired increasing interest in combining CRFs and
neural networks [24], [40]–[42]. For example, Liu et al. [43]
proposed a deep neural network which learns the unary and
pairwise potentials of continuous CRF in a unified deep CNN
framework for the task of depth estimation. Lin et al. [44]
combined the strengths of both CNNs and CRF-based graphi-
cal models within a unified framework for the semantic image
segmentation problem. In natural language processing, Do and
Artieres [45] proposed an approach to combine deep neural
networks and Markov networks for solving the sequence
labeling problem. Yao et al. [46] showed that the performance
of an RNN-based word tagger can be significantly improved by
incorporating the elements of CRFs in language understanding.
Different from our method, most of these approaches treat
learning with CRF and feature extraction with neural networks
as two separate steps of supervised learning scheme.

Similar to most classification methods [26], [47], sequence
labeling [23] usually requires to use a large number of
fully labeled sequences for training, where all elements in
a sequence have been annotated in advance. As discussed in
Section I, such fully labeled sequences are hard to be obtained,
especially in the scenario of NLP. Different from computer
vision tasks, sequence labeling often involves expert knowl-
edge from the NLP domain, which is much more expensive
than image annotation.

Unlabeled data, in contrast, are abundant and contain
latent sequential patterns. Unlabeled data for sequence label-
ing have been extensively studied in unsupervised learning,
such as unsupervised POS tagging [48]–[50]. For example,
Ammar et al. [49] introduced the CRF autoencoder to rep-
resent data. Lin et al. [50] considered replacing words by
word embeddings in HMMs or CRFs models. When the
amount of labeled data is fixed, a better performance could
always be achieved if unlabeled data are utilized during
learning [51], [52].

To reduce the high cost for annotation, semisupervised
learning algorithms were developed for sequential labeling
such that both unlabeled and labeled data are utilized. For

example, Täckström et al. [52] and Tsuboi et al. [34] intro-
duced a weakly supervised constrained lattice training method
with outside resource, such as dictionaries. Zhang et al. [53]
used the CRF autoencoder and provided an electromagnetic-
based training method. Marinho et al. [51] introduced
moment-based semisupervised learning method for HMMs.
Täckström et al. [52] and Tsuboi et al. [34] introduce a con-
strained lattice training method with partially labeled data.
Verbeek and Triggs [54] and Marinho et al. [51] extended
traditional CRFs/HMMs in a semisupervised manner to utilize
unlabeled data. Moreover, Marcheggiani and Artieres [35]
proposed an active learning method to reduce annotation
efforts for sequence labeling. Clearly, these semisupervised
learning methods are different from the proposed one since
most of them assume each sentence are fully labeled or unla-
beled. The partially labeled data source in sequence labeling
is experimentally shown effectiveness in bridging labeled and
unlabeled data. As a consequence, such a limitation may
hinder their performance in boosting SoA.

Based on the works described earlier, we demonstrate that it
is possible to learn from different types of data sources within
a unified framework, ranging from fully labeled data, to the
partially labeled, and even to unlabeled data, for sequence
labeling. To the end, we provide an end-to-end trainable
system for all data sources with no manual feature engineering.

III. DCRF3 FOR SEQUENCE LABELING

In this section, we introduce a new deep conditional random
fields for sequence labeling, termed as dCRF3. Our model
mainly contains two components: one is for learning feature
representation and the other is for labeling sequence. Fig. 3
has shown the architecture of our model.

A. Conditional Random Fields

Sequence classification (or labeling) problems aim at mod-
eling the dependencies among labels, while predicting a
structured output sequence for the input sequence. In such
tasks, dependencies among neighboring labels are crucial,
it is conducive to consider the correlations among labels
in neighborhoods and jointly decode a chain of labels so
that the resulting label sequence could be meaningful. For
example, in NER task with beginning, inside, outside, end
and single annotation, it is meaningless and illegal to annotate
I-LOC after B-ORG (i.e., mixing the different annotation
types). CRF is widely used to make joint labeling of the
tokens in a sequence [39], which is capable of capturing the
dependence information and further avoiding generating illegal
annotations. Therefore, we model the label sequence jointly
using the CRF, instead of predicting each label independently.
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Fig. 3. Structure of dCRF3.

Formally, let x = {x1, x2, . . . , xn} represent a sequence of
input instances and y = {y1, y2, . . . , yn} be a list of predicted
random variables whose components belong to a set of labels
Y. Here, y is linked by conditional dependencies which are
encoded by an undirected graph or chain G = (V , E) with
cliques c ∈ C . For a given input sequence x, inference
is performed by finding the output which maximizes the
conditional probability p(y|x). Based on the above-mentioned
notations and the Hammersley–Clifford theorem, the condi-
tional probability in CRF is defined by

p(y|x) = 1

Z(x)

�

c∈C

�(x, yc) (1)

where Z(x) is a global normalization term with the definition
of Z(x) = �

y
�

c∈C �c(x, yc), and �(x, yc) denotes a
potential function parameterized by features.

In general, the features are constructed by human
experts or preprocessing steps, e.g., the popular log-linear
model [39]. Different from these traditional approaches,
we propose to achieve the features by a neural network.
In other words, our method learns features from data in a
data-driven way, thus enjoying better representative capacity.

B. Feature Representation Based on Neural Networks

In this section, we elaborate the feature learning module
adopted in our dCRF3. More specifically, dCRF3 passes the
input data points through a neural network consisting of
several hidden layers so that the latent representation is learned
as the features. Different from popular neural networks, our
network consists of two different connections, namely, feed-
forward and lateral connection (see Fig. 3). The lateral con-
nection is used to capture the context information, which is

implemented by long short-term memory (LSTM) units.
The feed-forward connection is designed to learn feature
representation which simultaneously incorporates the temporal
information given by the lateral connection. In short, with
the corporation of these two connections, the neural network
works as an automatic feature generator and could learn high-
level representation. One unique characteristic of sequence
labeling is that the historical and future input for a given
time step could be accessed. To exploit such a characteristic,
we use a bidirectional LSTM architecture [55] to extract
features. LSTM is a variant of RNN, capable of learning
long-term dependencies and coping with the gradient vanish-
ing/exploding problems. Basically, LSTM unit is similar to
RNN unit, except that the hidden layer updates are replaced
by purpose-built memory cells, where those cells are three
multiplicative gates which control the proportions of informa-
tion to forget and to pass to the next time step. Fig. 4 has
shown the schematic of a LSTM unit [56].

Formally, the formulas to update an LSTM unit at time t
are

it = σ(Wi ht−1 + Ui xt + bi )

ft = σ(W f ht−1 + U f xt + b f )

c̃t = tanh(Wcht−1 + Ucxt + bc)

ct = ft � ct−1 + it � c̃t

ot = σ(Woht−1 + Uoxt + bo)

ht = ot � tanh(ct )

where σ is the sigmoid activation function, � represents
elementwise product, i, f , and o are the input gate, forget gate,
and output gate, respectively. xt represents the input instance
at the time stamp t , and ht is the corresponding hidden state
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Fig. 4. Schematic of LSTM unit.

(also called output) at time of t . W∗ denotes the weights for
hidden state ht , U∗ are the weights of different gates for input
xt , and b∗ denotes the bias.

The hidden state ht of LSTM is capable of taking infor-
mation from left (past) contexts but cannot take information
from right (future) contexts. However, it is beneficial to have
access to both past and future contexts for sequence labeling
tasks. Therefore, we introduce bidirectional LSTM (Bi-LSTM)
which presents the input sequence forward and backward to
two separate hidden states to learn the past and future infor-
mation, respectively. Specifically, let ht = lstm(ht−1, xt )
denote the hidden state update process of LSTM, for
Bi-LSTM, we have

−→
h t = lstm(

−→
h t−1, xt )←−

h t = lstm(
←−
h t+1, xt )

where
−→
h t and

←−
h t denote forward hidden state and backward

hidden state, respectively. To enjoy nonlinearity, we add a
nonlinear layer after the LSTM layer, namely

ht = tanh(Wr
−→
h t +Wl

←−
h t + bt ). (2)

This representation includes both local and global information,
which could capture contextually sensitive signals across the
sequence.

C. CRF Layer for Sequence Labeling

With the features generated by the aforementioned neural
network, we design a general model to capture the relation-
ships of labels in a sequence. In this paper, for sequence
classification, we employ a linear chain model based on the
first-order Markov chain structure because it allows inves-
tigating the potential power on standard sequence labeling
tasks. In the chain model, there are two kinds of cliques,
namely, local cliques and transition cliques. More specifically,

local cliques correspond to the elements in a sequence, whose
representation is denoted by ht as defined in (2). Alternatively,
transition cliques, on the other hand, reflect the evolution of
states between two neighboring elements at the timestamp t−1
and t , where the transition distribution is defined by θ .

Formally, a linear-chain CRF can be written as

p(y|x) = 1

Z(x)
exp

⎧
⎨

⎩

|x|�

i=1

θyi−1,yi + Wyi hi

⎫
⎬

⎭ (3)

where Z(x) is an instance-specific normalization function
and θ indicates a transition matrix that contains transition
probabilities, i.e., θi, j is the probability of transition (yi , y j ).

Unlike most CRF models and their variants, we do
not assume every element to be labeled. In other words,
in our setting, there may be a fully labeled sequence
{(x1, y1), (x2, y2), (x3, y3)}, a partially labeled sequences,
{(x4, y4), x5, (x6, y6)}, and an unlabeled sequence {x7, x8, x9}.
Clearly, traditional CRFs cannot solve such a complex prob-
lem. In the following, we will introduce how to solve this
problem one by one.

D. Fully Labeled Data

The scenario of fully labeled data is a standard case in [39].
For a given independent identically distributed training data
set Dl , x denotes the input sequence and y denotes the
corresponding label. The conditional probability of y with
respect to x is calculated using (3), and feature learning
is achieved by maximizing the conditional log-likelihood as
follows:

�

x∈Dl

log p(y|x). (4)

The model parameters could be optimized by solving the
above-mentioned problem. In this paper, we further refor-
mulate the optimization as a layer and add it at the top
of the feature learning neural network. More specifically,
we define the objective function with the conditional likelihood
as follows:

�l = −
�

x∈Dl

log p(y|x). (5)

The loss is then collected through the forward pass of the
whole neural network, which is further used to compute the
gradient with respect to each parameter. With the gradient, our
model could be optimized with backpropagation. Moreover,
we also enforce �2 regularization to the parameters of the
neural network to avoid overfitting.

E. Partially Labeled Data

The scenario with partially labeled data is different from that
with fully labeled data. Therefore, we cannot use the standard
conditional probability of output y straightforwardly. Instead,
we propose a new way to address labeled and unlabeled ele-
ments in a sequence. In detail, for labeled elements, we employ
the same procedure described previously to process them.
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For unlabeled elements, we consider all possible labels by
defining a new conditional probability of y

p(y|x) = 1

Z(x)
exp

� �

i∈{�yi−1=1,�yi=1}
θyi−1,yi +Wyi hi

+
�

i∈{�yi−1=0,�yi=1}

�

yi−1

θyi−1,yi +Wyi hi

+
�

i∈{�yi−1=1,�yi=0}

�

yi

θyi−1,yi + Wyi hi



(6)

where �yi = 1 indicates that yi is known at the i th clique,
�yi = 0 indicates that yi is unknown at the i th clique,
and Z(x) indicates the normalization factor. Comparing with
the standard CRF model [34], Z(x) keeps unchanged in our
method.

Similar to (4), the estimation of parameters for partially
labeled data is based on the conditional log-likelihood. Thus,
we design our neural network by using the conditional log-
likelihood as another objective function with the following
definition:

�p = −
�

x∈Dp

log p(y|x). (7)

From the above-mentioned equation, our method models the
labeled and partially labeled data in the similar way. Thus,
we use the same parameters for these two scenarios.

F. Unlabeled Data

Unlabeled case is an extremely special case of our model,
i.e., there is no label available for any sequence. Thus,
we cannot construct conditional likelihood like what we did
for labeled instances. To address this issue, we assume there
are hidden sequential patterns behind the observed data and
the unlabeled data actually carry useful information for recog-
nizing these patterns. To explore and exploit the useful infor-
mation hidden into unlabeled data, we introduce an encoder–
decoder network structure [49], [57] for handling unlabeled
data.

To be specific, we build a model p(x̂|x) by encoding the
input into a latent state sequence which is further decoded to
reconstruct the input sequence.1 The idea behind our model
is utilizing latent states to represent the input sequence as
accurate as possible. In our setting, the deep CRF is regarded
as an encoder, which exploits the global features of the input
observation x. For the decoder, we introduce a simple decoding
layer to reconstruct the sequence according to independent
categorical distributions, that is, conditioned on the hidden
label

p(x̂|x) =
�

y

p(y|x)p(x̂|y) (8)

1We use x̂ to denote the output of the autoencoder. Note that x̂ is the
approximation to the input x.

where p(y|x) is the encoder, and each xi is generated from
pα(xi |yi ). This further leads to

p(x̂|x) =
�

y

p(y|x)

Z(x)

|x|�

i=1

pα(x̂i |yi )

=
�

y

exp
��|x|

i log αx̂i |yi + θyi−1,yi +Wyi hi

�

Z(x)
(9)

where y ranges over all label sequences and α is a matrix
of conditional multinominals, i.e., a word x̂i conditioned on
a label yi . α is defined by a softmax function, such that α·|yi

are constrained to lie on the simplex.
We also add this part into the proposed model and treat

it as the top layer. We use the conditional likelihood as the
objective function to train the model. Note that unlabeled
case is different from the fully/partially labeled case thanks
to the existence of the decoder. Equation (9) has defined
the conditional likelihood of the reconstructed observations
x̂ given the observation x, which is used to define the loss
function as follows:

�u = −
�

x∈Du

log p(x̂|x). (10)

G. Joint Training

Thus far, we have presented our neural network-based
CRFs model for different cases, ranging from fully labeled,
to partially labeled, to unlabeled data. For each case, we build
different losses that are integrated together for jointly training
our model. Note that despite the differences in the degree
of annotation, we let them share the same neural network
architecture. The motivation is that unlabeled data also contain
sequential patterns similar to those found in labeled data, such
as similar grammatical properties. Combining (5), (7), and
(10), we define the joint objective function as follows:
�

Dl

�l(W)+
�

Dp

�p(W)+
�

Du

�u(W, α)+ ||W||2 + ||α||2

(11)

where W indicates the parameters of our neural network-
based CRFs. Note that �2 regularization is adopted to avoid
overfitting.

Our model enjoys the advantages of both neural networks
and CRFs, which is trainable end-to-end model and could be
optimized by the stochastic gradient descent. During training,
sequences from labeled, partially labeled, and unlabeled data
sources are collected to form respective minibatches and the
error is computed for the purpose of optimizing our model.

Once the parameters are learned, predictions are made by
maximizing the posteriori estimation of y with respect to x,
that is,

y∗ = arg max
y

p(y|x). (12)

Here, the above-mentioned problem is solved by adopting
the Viterbi algorithm.
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TABLE II

USED DATA

IV. EXPERIMENTS

We verify the effectiveness of our method for two widely
used sequential labeling tasks, namely, POS tagging and NER
on two different data sets.

A. Data Sets

We use two labeled data sets for these two different tasks,
i.e., Penn Treebank [58] for POS tagging and CoNLL2003 [59]
for NER. For all the evaluated data sets, we use the default
data partitions and investigate the performance of the testing
partition. By following the popular testing protocol [23],
we adopt accuracy and F-score as the performance metric for
POS tagging and NER, respectively. Furthermore, we also use
the New York Times corpus from July 1994 to June 1995 as
unlabeled data. Table II summaries the statistical characteris-
tics of these data sets.

B. Word Embedding

It has been shown in [42] that word embedding is beneficial
to NLP tasks and plays a vital role to improve sequence
labeling performance. In our experiments, we use Stanford’s
publicly available GloVe 200-dimensional word embeddings2

trained on six billion words from Wikipedia and web text [60].

C. Experimental Settings

We compare dCRF3 with the following five SoA baselines.

1) CRF: A standard linear-chain CRF model.
2) CRFCC: A semi-CRF-based model to address unla-

beled data using projected labels [52]. For comparisons,
we follow its unsupervised setting and use all possible
labels instead.

3) RNN: A basic RNN model [61].
4) BiLSTM: A bidirectional LSTM network [55].
5) BiLSTM-CRF: The SoA in sequence labeling tasks

including POS tagging and NER. In short, the method
adds a CRF layer on a bidirectional LSTM [23].

Among the evaluated methods, CRF and BiLSTM-CRF only
use the labeled data for training. RNN and BiLSTM ignore the

2https://nlp.stanford.edu/projects/glove/

TABLE III

PERFORMANCE ON POS TAGGING (ACCURACY) AND NER (F-SCORE)
FOR DIFFERENT MODELS WITH DIFFERENT TYPES OF DATA.

ALL MODELS HAVE ONE FOLD (10% OF THE DATA SET) OF FULLY

LABELED TRAINING DATA, AND THE COLUMNS SHOW THE

VARYING AMOUNTS OF PARTIALLY LABELED
TRAINING DATA (1 FOLD = 10%)

loss of unlabeled elements in partially labeled sequences and
cannot utilize unlabeled data either. In contrast, our proposed
method is capable of exploiting labeled, partially labeled and
unlabeled data if provided. For CRF, we use standard feature
functions.3 For our dCRF3 model, the word embedding size is
200 and LSTM hidden dimension is 128. Similarly, we set the
same for BiLSTM and BiLSTM-CRF. For the Penn Treebank
data set, the size of the label set is 45. For the CoNLL2003 data
set, we use the inside and outside format and the size of the
label set is 4.

D. Experiments

In our experiments, we have three different settings: the
partially labeled data setting, the unlabeled data setting, and
the joint partially and unlabeled data setting. We only use Penn
Treebank and CoNLL2003 data sets. In the beginning, we split
the training set into 10 equally sized folds for each data set.
As the used data set is quite large, even 10% of the data
sets is very challenging. For example, 10% of Penn Treebank
data set includes 3821 sentences, which is sufficient to train a
good model as shown in our experiments. We simulate labeled,
unlabeled, and partially labeled data based on these folds and
report the averaged results over 10 repeated tests. For partially
labeled data, we randomly removed 50% label information in
each sentence to create partially labeled data.

1) Partially Labeled Data: The upper half of Table III
shows the performance of different models with varying num-
ber of folds of partially labeled data. It can be observed that
our model outperforms other models, rather significantly in the
case of NER. Note that dCRF3, CRFCC, BiLSTM, and RNN
all learn information from the partially labeled data whereas
BiLSTM-CRF and CRF cannot. Both dCRF3 and BiLSTM
generate superior results to RNN, likely due to the fact
that LSTMs are better at memorizing sequential information.

3http://www.nltk.org/_modules/nltk/tag/crf.html
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TABLE IV

PERFORMANCE ON POS TAGGING (ACCURACY) AND NER (F-SCORE)
FOR DIFFERENT MODELS WITH DIFFERENT TYPES OF DATA.

ALL MODELS HAVE ONE FOLD (10% OF THE DATA SET) OF FULLY

LABELED TRAINING DATA, AND THE COLUMNS SHOW

THE VARYING AMOUNTS OF UNLABELED
TRAINING DATA (1 FOLD = 10%)

CRFCC does not work well because it assigns all possible
labels to unlabeled words and some labels are fake. As the
volume of partially labeled data increases, the performance
of dCRF3 and RNN and BiLSTM, as they receive more
supervision, also improves.

2) Unlabeled Data: The lower half of Table IV presents
the performance of different models with varying number
of folds of unlabeled data. Again, our model is superior to
the other models. This can be attributed to dCRF3’s ability
to learn from unlabeled data while others cannot. It is also
shown that the performance of dCRF3 is boosted as more
unlabeled data comes in, demonstrating that the unlabeled
data are useful for supervised learning. CRFCC uses the
unlabeled data and projected labels to make a supervised
model possible. However, this supervision is not accurate.
Unlike dCRF3 based on neural networks, CRFCC uses a
standard linear combination of features and weights, which
is insufficient for modeling unlabeled sequences.

3) Joint Partially Labeled and Unlabeled Data: In Fig. 5,
we show the performance on the two tasks using both the
partially labeled and unlabeled data. As the amount of the
data grows, our model becomes more competent, suggesting
that useful information can be drawn and learned from such
data sources. Looking further into the correlation between
model performance and the size of data from each source,
we discover that, while including more data from either source
generally helps, the contribution of adding partially labeled
data is more evident than that of unlabeled data.

E. Real-World Scenario

We further investigate how well our method works on
real-world data sets with different real-world unlabeled data.
We use original Penn Treebank and CoNLL2003 data sets
for POS tagging and NER tasks, respectively. We use full-
sized training set as labeled data. The unlabeled data is from
the New York Times corpus. We consider different sizes of

Fig. 5. Performance of the proposed model with different sizes of joint
partially labeled and unlabeled data (1 fold = 10%). (a) POS tagging.
(b) NER.

the unlabeled data. We show our results in Fig. 6. It shows
that with the help of unlabeled data, our method becomes
slightly better than the SoA results (based on the BiLSTM-
CRF model [23]). Because unlabeled data help to learn better
representation. However, after a portion of the unlabeled
data, the performance does not increase. This illustrates the
limitation of the unlabeled data.

F. Parameter Analysis

In real cases, there are always different numbers of labeled,
partial labeled, and unlabeled samples. Thus, it should be
critical to set parameters before three loss functions imposed
on these three types of samples in (11), respectively. We
further conduct the joint training with different weights for
different parts in loss function to consider the data imbalance,
which is written as follows:

� =
�

Dl

�l(W)+ λp

�

Dp

�p(W)

+λu

�

Du

�u(W, α) + ||W||2 + ||α||2. (13)

In the real-word applications, the number of labeled data nl is
usually smaller than the number of partially labeled data n p

and the number of unlabeled data nnu , since the fully labeled
data are more expensive, i.e., (nl ≤ min{n p, nu}). Therefore,
the equal weight for different types of data may be suboptimal
solution for LAVD in this situation. The weights for partially
labeled and unlabeled data should decay according to the ratio.

Based on this observation, we further experimentally
investigate five heuristic strategies for determining the
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Fig. 6. Performance of the proposed model with different sizes of unlabeled
data comparing with the SoA results. SoA results of the two tasks. (a) POS
tagging. (b) NER.

Fig. 7. Effects of weight parameters.

weights (λl , λp, λu). The first one is the equal weight
(1, 1, 1). The second one is (1, (nl/n p), (nl/(nu)). The
third one is (1, (nl/n p)1/2, (nl/nu)1/2). The fourth is
(1, (n1.5

l /n1.5
p ), (n1.5

l /n1.5
u )). The fifth is (1, (n2

l /n2
p), (n2

l /n2
u)).

In the experiment, we set 10%, 40%, and 50% data as the
fully labeled data, partially labeled, and data and unlabeled
data, respectively. The results for these five strategies are

shown in the Fig. 7 for NER on CoNLL2003 data set.
From the results, we empirically find that the fourth strategy
(1, (n1.5

l /n1.5
p ), (n1.5

l /n1.5
u )) performs the best.

V. CONCLUSION

In this paper, we proposed a new deep CRF to learn
hidden structured patterns from the data collected in various
scenarios. In brief, the data are with the annotation of various
degrees, ranging from labeled data, to partially labeled, to even
unlabeled data. Experimental results suggest that partially
labeled and unlabeled data can improve the performance of
sequence labeling.
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