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RoSeq: Robust Sequence Labeling
Joey Tianyi Zhou , Hao Zhang , Di Jin, Xi Peng , Yang Xiao , and Zhiguo Cao

Abstract— In this paper, we mainly investigate two issues for
sequence labeling, namely, label imbalance and noisy data that
are commonly seen in the scenario of named entity recog-
nition (NER) and are largely ignored in the existing works.
To address these two issues, a new method termed robust
sequence labeling (RoSeq) is proposed. Specifically, to handle
the label imbalance issue, we first incorporate label statistics in a
novel conditional random field (CRF) loss. In addition, we design
an additional loss to reduce the weights of overwhelming easy
tokens for augmenting the CRF loss. To address the noisy training
data, we adopt an adversarial training strategy to improve model
generalization. In experiments, the proposed RoSeq achieves the
state-of-the-art performances on CoNLL and English Twitter
NER—88.07% on CoNLL-2002 Dutch, 87.33% on CoNLL-2002
Spanish, 52.94% on WNUT-2016 Twitter, and 43.03% on
WNUT-2017 Twitter without using the additional data.

Index Terms— Label imbalance, named entity recognition
(NER), sequence labeling.

I. INTRODUCTION

EXISTING multioutput learning mainly aims at determin-
ing multiple outputs for a given input. In many cases, the

output often involves a structure that is helpful to the training
models, e.g., sequences, strings, trees, lattices, or graphs.
In order to infer the structured outputs from an observation
sequence rather than a data point, label sequence learning
or sequence labeling has been widely studied, where the output
sequence has inherent interconnections rather than a simple
concatenation of individual units. It is also an important step
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Fig. 1. Examples of ambiguous labels in CoNLL-2003 English NER data
set: the token “California” in the first sentence is labeled as Location (LOC),
whereas it is labeled as Miscellaneous (MISC) and Organization (ORG) in
the second and third sentences, respectively.

in the most natural language processing (NLP) applications
and has been applied to numerous real-world tasks including
but not limited to part-of-speech (POS) tagging [1], named
entity recognition (NER) [2], [3], and speech recognition [4].

In these tasks, NER has attracted increasing interests,
which detects not only the type of named entity but also
the entity boundaries. To disambiguate different entity types
of same tokens, NER needs a deep understanding of the
contextual semantics. As shown in Fig. 1, for example,
the token “California” in the first sentence is labeled as
location (LOC), whereas it is labeled as miscellaneous (MISC)
and organization (ORG) in the second and third sentences,
respectively. To tackle this challenging problem, a variety of
methods have been proposed, which are usually based on
hand-crafted rules and have suffered from limited performance
in practice [5]–[7]. Recent works have devoted to developing
learning-based algorithms, especially neural network-based
methods, which have remarkably advanced the state of the
arts [1], [2], [8]–[11]. Furthermore, these end-to-end models
generalize well on new entities based on features automatically
learned from data.

Although deep learning-based methods have achieved sig-
nificant progress, they ignore two important and commonly
seen properties of existing NER data sets as follows.

1) The label distribution is extremely imbalanced. Take
the CoNLL-2002 Dutch NER data set as a showcase
[Fig. 2(a)], 90.48% data are with unmeaning entity “O.”
Similarly, for the WNUT-2017 English Twitter NER data
set, the label of “O” even occupies 94.62% of the entire
data. [see Fig. 2(b)].

2) The data set is noisy. Like the WNUT data set collected
from user-generated tweets, the NER data set is collected
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Fig. 2. Label statistics on CoNLL-2002 Dutch NER and WNUT-2017 English
Twitter NER train set. The label type “O” is dominant in different data sets.
(a) CoNLL-2002 Dutch. (b) WNUT-2017 English Twitter.

TABLE I

F1 SCORE OF BILSTM-CNNS-CRF MODEL

ON WNUT-2017 DEVELOPMENT SET

from the social media and thus contains lots of noise,
such as emojis, punctuation, incomplete or misspelled
words, urls, unknown tokens, and so on. For example,
here is a sentence from tweets in WNUT data set,
“Soooo Glad its Finally Friday !!!! :P Thissss week
went to slow fo’me :/.” Here, “Soooo” is misspelled
and should be “So.” “fo’me” should be “for me.”

The first label imbalance issue severely affects the conver-
gence performance of the NER models. In practice, the per-
formance of these neural-based methods degrades significantly
since the learned models favor the overwhelming label types.
Here, we train one state-of-the-art (SOTA) neural network-
based NER model (i.e., bidirectional long short term memory
(LSTM) (BiLSTM)-convolutional neural networks (CNNs)-
conditional random field (CRF) [10]) on WNUT-2017 data
set and report its F1 scores of different entity types on the
development set given in Table I. Note that for the NER task,
the F1 score of unmeaning entity “O” does not be considered
in the final result. However, we only compute F1 score of
“O” for comparing with the rest meaningful entity types.
We observe that the dominant “O” label achieves more than
97% F1 score, whereas the other meaningful entity types
such as “Group” and “Product” only achieve around 10%
F1 score. In the experiment, we also find that those data
with “O” label can be correctly classified with very high
confidence. Unfortunately, in the NER task, we only care about
the performance of those meaningful token types rather than
the nonmeaningful “O” entity.

Most existing works ignore the noisy data issue and usually
assume that the NER data are clean. In consequence, the noisy
and untrimmed data affects performance significantly. For
example, the F1 score on the clean NER data set such as
CoNLL data set collected from news could easily reach over
than 80%. In contrast, the noisy data sets such as WNUT are
collected from Twitter, which is able to reach around 50%

only. To the best of our knowledge, there are only few works
that explicitly discuss and give an in-depth analysis of how to
handle these noisy data in NER.

Based on the above-mentioned observations, we propose a
novel learning algorithm, termed as robust sequence label-
ing (RoSeq), which focuses on how to handle label imbalance
and noisy data issues in a single framework. Specifically,
to handle the label imbalance issue, we propose a new label-
aware CRFs (LACRF) algorithm which assigns different labels
with different weights. Furthermore, inspired by the success
of the focal loss (FL) [12] in solving object detection problem,
we assign confidence-dependent weights to different samples
so that the model will not be overwhelmed by such as the
samples with “O” entity type in NER data sets. In other
words, we add the FL to the aforementioned LACRF loss
as the overall loss. On the other hand, to address the noisy
data issue, we adopt the adversarial training (AT) to virtually
create adversarial examples to improve the robustness of model
training. The contributions of this paper could be summarized
as follows.

1) To the best of our knowledge, this could be the first work
to explicitly discuss the label imbalance and noisy data
issues for sequence labeling. We find that the application
of NER generally encounters these two issues.

2) We propose RoSeq to alleviate the overfitting and non-
robust training problem caused by the label imbalance
and noisy data. Specifically, RoSeq employs a word-
level BiLSTM on the top of character-level and word
embedding features to learn relevant high-level features
in an end-to-end manner. Furthermore, a new objective
function is proposed for RoSeq.

3) Extensive experimental results show the remarkable
improvements over the SOTA NER models, especially
in the case of imbalanced label. In brief, our method
achieves SOTA performance on a series of NER bench-
mark data sets, namely, 87.33% F1 for CoNLL-2002
Spanish, 88.07% F1 for CoNLL-2002 Dutch, 52.94% F1
for WNUT-2016, and 43.03% F1 for WNUT-2017.

II. RELATED WORK

Our work is related to the following topics, i.e., NER and
robust learning that are briefly introduced in this section.

A. Named Entity Recognition
NER is typically framed as a sequence labeling task that

aims at automatic detection of named entities (e.g., person,
organization, and location) from free text [13]. The early works
are usually based on the hidden Markov model (HMM) [14],
support vector machine (SVM) [15], CRF [16], or percep-
tion models with the hand-crafted features [5]–[7]. More
specifically, they employed a system to read a large-scale
annotated training data, memorize a list of entities, and create
disambiguation rules based on discriminative features. Among
them, CRFs and HMMs are very effective and have achieved
SOTA performance in handling sequential data [1], [16]. Com-
paring with generative models (e.g., HMMs), discriminative
models (e.g., CRFs) are usually more powerful, which aims at
maximizing the conditional probability of the true label rather
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than modeling the joint distribution. Thanks to impressive
results achieved by CRFs, it has been widely used for handling
sequential data in the scenario of NLP and biological sequence
analysis.

Recent researches have shifted towards deep neural net-
works (DNNs) [2], [17]–[19]. Collobert et al. [8] proposed
a feed-forward neural network with a fixed sized window
for each word, but it failed in considering useful rela-
tions between long-distance words. To overcome this lim-
itation, Chiu and Nichols [9] designed a BiLSTM-CNNs
architecture that automatically detects word- and character-
level features. Ma and Hovy [10] further extended [9]
into BiLSTM-CNNs-CRF architecture wherein the CRF
module is added to optimize the output label sequence.
Liu et al. [20] proposed a task-aware neural language
model (LM) termed as LM-LSTM-CRF which incorporates
character-aware neural LMs to extract character-level embed-
ding under a multitask framework. Yang et al. [21] proposed
a transfer learning approach based on a deep hierarchical
recurrent neural network (RNN) that utilizes the informa-
tion from different lingual/domain data sets by fully or par-
tially sharing the model parameters among different tasks.
Ni and Florian [22] and Ni et al. [23] utilizes the Wikipedia
entity-type mappings to improve low-resource NER. In addi-
tion, some recent works [24]–[29] show that multitask learning
with joint training on multiple tasks/languages could improve
its performance. Most recently, the pretrained LMs have also
shown effectiveness in improving the performance of many
NLP tasks [30], [31]. In this paper, we focus on solving the
label imbalance and noisy data issues, thus we will not use
any external resources nor knowledge transfer and will not
investigate the performance with resource boosting methods.

B. Robust Learning
Imbalanced distribution is commonly seen in many nonNLP

applications, especially in computer vision tasks such as object
detection [12], segmentation [32], clustering [33], [34], and
dimension reduction [35]. The fundamental issue with the
imbalanced learning problem is the ability of the imbalanced
data to significantly compromise the performance of most
standard learning algorithms. There are many solutions [36]
proposed to address this issue. Sampling methods [37] for
imbalanced learning is one direction. Typically, the use of
sampling methods in imbalanced learning applications consists
of the modification of an imbalanced data set by some mech-
anisms in order to provide a balanced distribution. Sampling
methods attempt to balance distributions by considering the
representative proportions of class examples in the distribution.
Studies [37] have shown that a balanced data set could
improve the overall classification performance compared to an
imbalanced data set for several base classifiers. Cost-sensitive
methods [38] for imbalanced learning is another branch, which
consider the costs associated with misclassifying or over-
whelming easy samples [36]. Although the class imbalance
problem has been discussed for years, the investigation of it
on the task of NER is still limited.

To achieve robustness from noisy data, early works elim-
inate the effectiveness of noise using feature selection [39]

and stochastic optimization [40]. In recent, AT [41], [42] is
proposed to improve the robustness of image classification
model by injecting malicious perturbations into input images.
In the NLP community, Miyato et al. [43] proposed a semi-
supervised text classification method by applying AT, where
for the first time adversarial perturbations were added onto
word embeddings. Yasunaga et al. [44] applied AT to POS
tagging. Although these methods achieve some improvements
by deploying AT, their analysis is insufficient for noisy data.
In this paper, we provide a more in-depth analysis why AT is
workable on the noisy NLP data.

III. ROBUST SEQUENCE LABELING

A. Character-Level Feature Representation
Previous works have shown that character features can

improve the NER performance by capturing morphologi-
cal and semantic information [29]. In practice, character-
level representation learning method could be roughly
classified into two subjects: one is character-level BiLSTM
(Char-BiLSTM) [2] and the other is character-level CNN
(Char-CNN) [9], [10]. Reimers and Gurevych [45] have
observed that the performance difference between the
Char-BiLSTM and Char-CNN approaches is statistically
insignificant on sequence labeling tasks, but Char-CNN
approach has less parameters and is more competitive in
running time and computation resources. Thus, our method
adopts the Char-CNN approach as the character-level encoder
to learn character representation for each word.

To build the character-level feature representation encoder,
let C and dc denote the character vocabulary and the dimension
of character embeddings, respectively. Let the word w consist
a sequence of characters [c1, c2, . . . , cn], its character-level
representation is denoted by the matrix Cw ∈ R

dc×n , where n
is the length of word w. Then, the Char-CNN is designed using
multiple filters with different widths to learn the character-level
feature for word w. Typically, let F ∈ R

dc×k be a convolutional
filter with width k and bF be the bias term, the feature map
fw ∈ R

n−k+1 is obtained by applying a convolution between
Cw and F as follows:

fw[i ] = tanh(〈Cw[:, i : i + k − 1], F〉F + bF ) (1)

where 〈·, ·〉F denotes the Frobenius inner product and fw[i ]
represents the i th element of fw. With the following formula,
we use the max-pooling to capture the most important feature
as the representation of w corresponding to the kernel F

ew = max
i

fw[i ]. (2)

Since our Char-CNN contains multiple filters, suppose we
have m filters F1, F2, . . . , Fm , thus, the final character-level
feature representation of word w is ew = [ew

1 , ew
2 , . . . , ew

m ].
In other words, the concatenation of features is obtained by
different filters.

Instead of using the obtained character-level feature rep-
resentation ew of word w for the further process directly,
Kim et al. [46] indicate that running ew through the highway
networks is able to obtain the improvements on LMs. The
highway network [47] optimizes the neural networks and
increases their depth by using the learned gating mechanisms
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to regulate information flow. In other words, similar to the
memory cell in LSTM, highway networks allow for training
of deep networks by adaptively carrying some dimensions of
the input directly to the output [46].

Formally, highway network consists of a feed-forward layer
and two nonlinear transformations (i.e., transform gate and
carry gate), where the former applies an affine transform
followed by a nonlinear activation function to learn new
features and the transformations express how much of the
output is produced by transforming the input and carrying it.
By applying highway network on the character-level feature
representation, we have

z = t � g(Wgew + bg)+ (1− t)� ew (3)

where g is a nonlinear activation function. In our implemen-
tation, we use the tanh function. t = σ(WT ew + bT ) is the
transform gate, 1 − t denotes the carry gate, σ denotes the
Sigmoid activation function, and z is the output of highway
network. As the dimensions of ew and z are required be
consistent, Wg and WT are two square matrices. Generally,
we adopt two layers of highway network at the top of Char-
CNN and denote echar as the final character-level feature
representation of a word. The structure of the character-level
encoder is shown in Fig. 4.

In this section, we introduce the proposed RoSeq model
in details. Fig. 3 shows the architecture of the RoSeq model,
which consists of character-level encoder, word-level encoder,
label decoder, and adversarial training module.

B. Word-Level Feature Representation
To learn a better word-level representation, we concatenate

character-level features of each word with a latent word
embedding as ei = [echar

i , eword
i ], where the latent word

embedding eword
i is initialized with pretrained embeddings and

fixed during training. One unique characteristic of NER is that
the historical and future input for a given time step could
be useful for label inference. To exploit such a characteristic,
we use a BiLSTM [48] to extract contextualized word-level
features. LSTM is a variant of RNN, which is capable of
learning long-term dependencies and coping with the gradient
vanishing and exploding problems. Basically, the LSTM unit
is similar to the RNN unit, except that the hidden layer updates
are replaced by purpose-built memory cells to control the
proportions of information to forget and to pass to the next
time step.

Formally, the formulas to update a LSTM unit at time t are

it = σ(Wi ht−1 + Ui et + bi )

ft = σ(W f ht−1 + U f et + b f )

c̃t = tanh(Wcht−1 + Ucet + bc)

ct = ft � ct−1 + it � c̃t

ot = σ(Woht−1 + Uoet + bo)

ht = ot � tanh(ct )

where σ is the Sigmoid activation function and � represents
the elementwise product. i, f , and o are the input gate, forget
gate, and output gate, respectively. et represents the input

instance at the time stamp t and ht is the corresponding hidden
state (also called output) at time of t . W∗ denotes the weight
for hidden state ht , U∗ represents the weight of different gates
for input et , and b∗ denotes the bias.

The hidden state ht of LSTM is capable of taking infor-
mation from left (past) contexts but cannot take information
from right (future) contexts. However, it is beneficial to have
access to both past and future contexts for sequence labeling
tasks. Therefore, we introduce BiLSTM that represents the
input sequence forwards and backwards as two separate hidden
states so that the past and future information are learned.
Specifically, let ht = lstm(ht−1, et ) denote the hidden state
update process of unidirectional LSTM for a particular time
frame. In this way, for the BiLSTM, we have

−→
h t = lstm(

−→
h t−1, et ) (4)←−

h t = lstm(
←−
h t+1, et ) (5)

where
−→
h t and

←−
h t are the learned left context (forward) and

right context (backward) representations, respectively. After
the BiLSTM layer, the final representation of a word is
obtained by fusing its left and right context representations,
we apply a nonlinear layer for this process as

ht = tanh(Wl
−→
h t +Wr

←−
h t + b). (6)

Note that, the representation integrates both local and global
information, which could capture contextually sensitive signals
across sequences.

C. Label Decoder
For the sequence labeling tasks, dependencies or correla-

tions between labels in neighborhoods are crucial to disam-
biguate different entity types of each word. Therefore, it is
promising and helpful to utilize the correlations and decode
the best chain of labels for a given input sequence so that the
resulting label sequence could be meaningful. For instance,
in the NER task with standard BIO2 annotation scheme [49],
I-LOC is illegal to follow B-ORG (mixing different annotation
types), B-PER cannot follow another B-PER (wrong annota-
tion dependence), and so on. CRF is a widely used method to
make joint labeling of the tokens in a sequence [16], hence,
we use a linear-chain CRF as label decoder to capture the
relationships of labels and model the label sequence jointly,
instead of predicting each label independently.

In the CRF decoder, there are two kinds of cliques, namely,
local cliques and transition cliques, where local cliques cor-
respond to the individual elements in the sequence, whose
representation is ht as defined in (6), and transition cliques,
on the other hand, reflect the evolution of states between
the neighboring elements. Formally, let h = {h1, h2, . . . , hT }
represents a generic representation sequence where ht is the
representation vector of the t th word and y = {y1, y2, . . . , yT }
denotes a generic sequence of labels for h, hence the proba-
bilistic model for linear-chain CRF defines a family of condi-
tional probability p(y|h) over all possible label sequences y
given h can be written as

p(y|h) = exp
{ ∑T

t=2 θyt−1,yt +
∑T

t=1(Wyt ht + byt )
}

Z(h)
(7)
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where Z(h) is an instance-specific normalization function
and θ indicates a transition matrix that contains transition
probabilities, i.e., θi, j is the probability of transition (yi , y j ).

Despite that linear-chain CRF takes the correlations between
subsequent labels into consideration, however, it does not solve
the problem of label imbalance in the sequence. In order
to address this issue, we introduce a label-aware weight
ζ ∈ R

|L|, where |L| is the number of unique labels. The label-
aware weight is a resource specific weight vector, which is
derived from the statistical distribution of various label types
in the resource data set, where a label with higher frequency
tends to have lower weight. The idea of introducing this
label-aware weight is to suppress the effect of massive but
unmeaning label, i.e., “O” label, by reducing its contribution
and increasing the importance of other meaningful labels
while jointly decoding the best chain of label sequence in
the CRF. Formally, we first calculate the label proportion for
each label. Let ϑi ∈ R

|L| denote the label proportion of label
Yi (e.g., Yi ∈ {O, PER, LOC, ORG, MISC}), the label-aware
weight vector ζ is computed as

ζ =
(

maxi∈|L| ϑi

ϑ

)τ

(8)

where ϑ = [ϑ1, ϑ2, · · · , ϑL ]	 and τ is a scalar to adjust
the magnitude of weight values. In this way, if the label
proportion is higher, then the weight contribution is smaller.
Hence, by employing the label-aware weight into the CRF,
termed as LACRF, the (7) can be rewritten as

p̃(y|h) = exp
{ ∑T

t=2 θyt−1,yt +
∑T

t=1 ζ · (Wyt ht + byt )
}

Z̃(h)
(9)

while Z̃(h) is the corresponding normalization term after
introducing the label-aware weight vector ζ . Our objective is
to maximize the conditional log-likelihood estimation, which
is also equivalent to minimize the negative log-likelihood, and
the negative logarithm of the likelihood is defined as

�LACRF = −
∑

i

log p̃(y|h). (10)

The LACRF can alleviate the label-imbalance; however,
it does not differentiate between easy and hard samples, which
is still remained to be addressed. Despite the correlations
between labels in NER task and by treating NER as a
traditional classification task where each input token has the
corresponding class, it is obvious that “O” class is dominant
and other classes only occupy extremely small part in the NER
data set. According to Table I, the dominating data with “O”
class, termed easy samples, achieves notably higher confidence
compared with other rare classes. This may be caused by the
fact that the training procedure is still dominated by the easily
classified examples without sufficient valuable learning signal,
which leads to degenerated models.

This issue is also commonly seen in the object detection
task and Lin et al. [12] proposed a simple but effective
approach, namely, FL to address it. The main idea is to
reshape the loss function to down-weight overwhelming easy
samples (i.e., background objects) and thus focus training

on hard samples (i.e., foreground objects). Similar to back-
ground objects in object detection, in NER, the data with “O”
label: 1) occupies the overwhelming portion in the training
phrase; 2) are classified with very high accuracy (around
97% F1 score); and 3) are not considered in the evaluation.
Motivated by the effectiveness of FL for handling the object
detection, we apply it to address the easy/hard sample issue in
NER task. For the convenience of presentation, we here only
present the binary case, and it is easy to be applied to the
multiclass scenario. Formally, we first define

qt =
{

q if y = 1

1− q if otherwise

where y ∈ {1,−1} specifies the ground-truth class and q ∈
[0, 1] is the model’s estimated probability for the class with
label y = 1 based on the softmax of the word-level fusion
features (Fig. 3). The FL is to add a modulating factor (1−qt)

γ

to the cross-entropy loss of the classification task, with tunable
focusing parameter γ ≥ 0. The definition of FL is given as

�FL =
∑

i

−(1− qt )
γ log(qt ). (11)

In this way, when the input data are misclassified and qt

is small, the modulating factor is near 1 and the loss is
unaffected. As qt → 1, the factor goes to 0 and the loss for
well-classified examples is down-weighted.

So far we combine the LACRF loss and label-balanced cross
entropy loss as

� = �LACRF + �FL (12)

where �LACRF and �FL play regularization roles on the label
level and the instance level, respectively. The model can
be trained end-to-end with standard back-propagation by
minimizing the �.

D. Adversarial Training
In the computer vision community, a lot of experiments [50]

have demonstrated the fragility of deep learning models to
adversarial examples [42], which are created by changing a
very small proportion of pixels. Those adversarial examples
and original examples are virtually indistinguishable to human
perception [51]. Recently, adversarial samples are wisely
incorporated into training to improve the generalization and
robustness of the model, which is so-called AT [43]. It emerges
as a powerful regularization tool to stabilize training and
prevent the model from being stuck in a local minimum.

As the discussion in the introduction, the noisy data contain
a lot of abbreviations, emojis, and so on, which harm the
NER performance significantly. The main reason is that the
pretrained features such as word2vec are trained from clean
data and they are not helpful to represent those noisy data
such as emojis and misspelled words. To handle this challenge,
in this paper, we explore AT. Specifically, we construct an
adversarial sample by compounding the original sample with
a perturbation bounded by a small norm ε to maximize the
loss function as follows:

η̂ = arg max
η:‖η‖2≤ε

�(
; x+ η) (13)
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Fig. 3. Architecture of RoSeq.

Fig. 4. Character-level feature representation with convolutional and highway
networks.

where 
 denotes the current model parameters set. By adding
loss-aware perturbation during training, the model becomes
more resistant to noisy data.

Unfortunately, we are unable to compute η in (13) exactly
since the exact optimization with respect to η is unfeasible.
Following the strategy in [42], this value can be approximated
by linearizing it as follows:

η̂ = ε
g
‖g‖2 , where g = ∇�(
; x) (14)

where ε can be determined on the validation set. In this way,
adversarial examples are generated by adding small pertur-
bations to the inputs in the direction that most significantly
increases the loss function of the model. We find such η against
the current model parameterized by 
, at each training step,
and construct an adversarial example by

xadv = x + η̂. (15)

Noted that we generate this adversarial example on both the
word and character embedding layer, respectively, as shown
in Fig. 3.

Then, the classifier is trained on the mixture of original and
adversarial examples to improve the generalization. To this
end, we augment the loss in (12) and define the loss function
for AT as

�AT = �(
; x)+ �(
; xadv) (16)

where �(
; x) and �(
; xadv) represent the loss from an orig-
inal example and its adversarial counterpart, respectively. Note
that we present the AT in a general form for the convenience
of presentation. For different samples, the loss and parameters
should correspond to their counterparts. For example, we can
compute the perturbations ηc for char-embedding and ηw for
the word embedding.

IV. EXPERIMENTS

A. Data Sets

To verify the effectiveness of our method, we conduct
the experiments on the following widely used NER data
sets: CoNLL-2002 Dutch & Spanish NER [52], CoNLL-
2003 English NER [53], and WNUT-2016/17 English Twitter
NER [54], and we use begin, inside, outside, end, single
tagging scheme [2], [5], [10], [55] in our experiments. For
CoNLL data sets, there are four different types of named
entities: Location (LOC), Person (PER), Organization (ORG),
and Miscellaneous (MISC). The WNUT-2016 data set contains
ten types of named entities, whereas WNUT-2017 data set
has six types, and O is used as unmeaning label for all of
those data sets. The statistics of the data sets are described
in Table II. Note that different from CoNLL data sets, WNUT
is the annotated NER data sets on the noisy user-generated
text, e.g., tweets.
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TABLE II

STATISTICS OF NER DATA SETS

B. Experimental Setup

We use publicly available pretrained word embeddings for
English, Spanish, and Dutch languages in our experiments.
For English, we choose the 100-dimensional GloVe [56]
word embeddings, which is trained on Wikipedia-2014 and
Gigaword-5,1 whereas for Spansih and Dutch, we use the pre-
trained 50-dimensional word embeddings are trained using the
word2vec package2 on the corresponding Wikipedia articles
(2017-12-20 dumps) [29].

Specifically, we also use the orthographic encoder [27],
[57], [58] for characters and words while training on the
WNUT-2016/17 data sets for fair comparison. The ortho-
graphic encoder is used to encapsulate capitalization, punc-
tuation, word shape, and other orthographic features. Let “n”
denotes number, “c” is a letter (“C” if capitalized), punctua-
tion is marked as “p.” Then, for example, given a sentence
“I don’t like 13!,” its corresponding orthographic represen-
tation is “C cccpc cccc nnp.” In the experiment, we rep-
resent each orthographic character and orthographic word
with 30-dimensional and 50-dimensional randomly initialized
vectors, respectively. Then those features are concatenated to
their corresponding words or characters.

For model hyperparameters, we use three filters with widths
[2, 3, 4] for Char-CNN encoder and set each filter number
as 20, the dimension of hidden states of word-level BiLSTM
is 100, τ in the label-aware weight is set to 0.25, γ in the
FL is fixed to 2.0, and the ε of AT is fixed to 5.0 in our
experiment. Batch size is set as 16 for all experiments. The
parameters optimization is performed by Adam optimizer [59]
with gradient clipping of 5.0 to avoid gradient exploding
problem and learning rate decay strategy. We choose the initial
learning rate of β0 = 0.001 for all experiments. At each
epoch t , learning rate βt is updated using βt = β0/(1+ρ× t),
where ρ is the decay rate with value 0.05, we also set a
minimal learning rate βmin = 1e−4 and let βt = βmin if
βt < βmin. To reduce the overfitting issue, we also apply
dropout mechanism [60] to the word and character embedding
layers with drop rate 0.2 and the output of the BiLSTM layer
with drop rate 0.5, respectively.

For the base model, we create a standard
BiLSTM-CNNs-CRF model that simply removes the
FL, AT, and LACRF components, and train this model on
each data set. All the hyperparameter settings and parameters
optimization strategies of this base model are the same as
the aforementioned setup, except that we only use the basic

1https://nlp.stanford.edu/projects/glove/
2https://github.com/tmikolov/word2vec

linear-chain CRF for the base model and no AT, as well
as FL, are adopted.

C. Comparison With State-of-the-Art Methods
In this section, we compare our approach, i.e., RoSeq model,

with the SOTA methods on the five benchmark data sets. In the
experiment, we run both the base model and our RoSeq model
to show the improvements on the benchmark data sets and
then compare with SOTA methods. The results on the test
set of each benchmark data set are reported in Table III. The
proposed RoSeq is able to achieve a new SOTA performance
on different data sets, i.e., 88.07% on CoNLL-2002 Dutch,
87.33% on CoNLL-2002 Spanish, 91.42% on CoNLL-2003
English, 52.94% on WNUT-2016 Twitter, and 43.03% on
WNUT-2017 Twitter. Note that we do not include the perfor-
mance of some of the most recent works [9], [20], [30], [31],
and [61], for a fair comparison. Although those works achieve
slightly higher results on some of the benchmark data sets, they
either incorporate external resources, transfer knowledge from
other lingual/domain data sets, augment POS tags or lexicons
as additional inputs, or jointly training with cross-lingual/
domain data sets by sharing model parameters, and so on.
In contrast, our model does not use any additional resources
and only focus on the task data set itself during the training
phase. How to incorporate additional information to further
boost performance is not the focus of this paper.

D. Ablation Study of RoSeq Model
In the proposed RoSeq model, we introduce the LACRF, FL,

and AT for addressing the label imbalance, easy/hard samples,
and noisy data issues. In this section, we investigate the effects
of those introduced components and study how they help
to improve the model. We conduct the experiments on the
CoNLL-2002 Dutch NER and WNUT-2016 English Twitter
NER data sets and the results are summarized in Table IV.

From the table, we observe that all the proposed components
have contributions to improve the base model, while the AT
contributes the most. It is also interesting to note that the
performance improvement on WNUT-2016 English Twitter
NER data set is higher than that on CoNLL-2002 Dutch NER
data set, and we have the similar observation on rest two
CoNLL and WNUT-2017 data sets. Since the CoNLL data
sets are collected from news wire articles, which are clean and
can be easily understood by the learning model. In contrast,
the WNUT data sets, which were obtained from user-generated
tweets, contain a lot of noises, such as emojis, punctuation,
incomplete or misspelled words, and so on. Those noises affect
the model’s performance largely due to a large amount of
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TABLE III

COMPARISON WITH THE SOTA METHODS (F1 SCORE (%))

TABLE IV

PERFORMANCE COMPARISON BETWEEN MODELS

WITH DIFFERENT COMPONENTS

out-of-vocabulary tokens, wrong semantic/syntactic relations
between words, and so on.

For the CoNLL-2002 Dutch data set, the base model
achieves 85.23% F1 score. The LACRF component slightly
improves the performance by 0.38%. The FL compo-
nent improves the performance with around 0.85%. The
AT improves the model most significantly with pushing the
F1 score to 86.95%. Therefore, AT not only helps to gener-
alize the model and suppress the noise but also create new
training samples by injecting the perturbation into the input
token embeddings. Finally, the RoSeq model, which merges
those three components, achieves 88.07% on the CoNLL-2002
Dutch NER data set.

For the WNUT-2016 English Twitter data set, the perfor-
mance increasing trends are similar to that on Dutch data
set. Although the absolute F1 scores obtained by the model
are relatively lower than that of the CoNLL-2002 Dutch data
set, the performance improvement is much larger. Similarly,
the AT contributes the most, since WNUT-2016 data set is
the noisy user-generated data and AT component is good
at suppressing the noises in the data set. Different from
CoNLL-2002 Dutch data set, the RoSeq model achieves more
than 6.8% improvements on WNUT-2016 data set.

E. Labelwise Performance Analysis
In the proposed RoSeq model, the introduced components,

i.e., LACRF, FL, and AT, show improvements for NER task
on different data sets. In this experiment, we further conduct
the labelwise performance analysis of the RoSeq model and
the base model. Here, we also take CoNLL-2002 Dutch NER
and WNUT-2016 English Twitter NER as a showcase and
results are illustrated in Fig. 5. Note that the result of “O”
label in the figure is only visualized for comparison, which is
not considered as the contribution in the final result. Labels in
the figure are sorted by frequency in descending order.

In Fig. 5(a), the RoSeq model outperforms the base model
on all the five labels. Although it only shows a slight
improvement on the unmeaning and dominating “O” label
compared to the base model, the RoSeq gives more significant
improvements for the rest meaningful labels. For example, for
“PER,” “LOC,” and “ORG” labels, our method obtains around
1.7%, 0.9%, and 3.01% absolute improvement in F1 score,
respectively. For the label “MISC” with the lowest F1 score
in the base model, our method improves the F1 score by 5.19%
and it is the largest improvement among all the labels, which
indicates that our method is more effective for the sparse labels
and hard samples.

For WNUT-2016 English Twitter data set, as shown in
Fig. 5(b), the results are similar to that on CoNLL-2002
Dutch NER, while the improvements of RoSeq model are
more significant. The performance of the base model and our
method is comparable in nonmeaningful “O” label. In the
remaining meaningful labels, our method increases 5.46%,
4.51%, 13.0%, 4.0%, and 0.15% absolute F1 scores on
“person,” “geo-loc,” “facility,” “company,” and “movie” labels,
respectively. The base model performs worst on the “other,”
“product,” and “sportsteam” labels, and it even fails to recog-
nize the “musicartist” and “tvshow” labels (both of the two
labels are 0.0% F1 scores in the base model). The samples
with those labels are treated as the hard samples since their
training size are limited. Compared with the base model,
our method pushes the result of “other” and “sportsteam” to
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Fig. 5. Comparison of the results between Base and RoSeq models at the label level on CoNLL-2002 Dutch NER and WNUT-2016 English Twitter
NER test sets. Red bar: base model. Blue bar: results of RoSeq model. The number below each label denotes the label proportion in the training data set.
(a) CoNLL-2002 Dutch. (b) WNUT-2016 English Twitter.

TABLE V

COMPARISON OF PREDICTED EXAMPLES BETWEEN THE BASE MODEL AND ROSEQ

34.59% and 45.68%, whose F1 scores absolutely increase by
18.21% and 21.08%, respectively. For the “product” label, our
method increases the F1 score from 10.8% of the base model
to 27.59%, which is more than 2.5 times improvement. For
those failed labels in the base model, our method achieves
14.14% F1 score on “musicartist” label. Furthermore, our
method also fails to recognize any “tvshow” label from the
data set.

Overall, by comparing the labelwise performance of the
base model and our RoSeq model on CoNLL-2002 Dutch and
WNUT-2016 English Twitter data sets, we demonstrate that
the RoSeq model is able to address the label imbalance issue
and also shows its effectiveness to improve the performance,
especially on the noisy user-generated data sets (e.g., WNUT
data sets) and limited training size of some classes.

Moreover, we also show some predicted examples for both
of the base model and our proposed RoSeq algorithm to verify
the effectiveness of RoSeq, as justified in Table V. In partic-
ular, we choose several testing samples from CoNLL-2003
data sets where the base model fails to assign correct labels
for the specific phrases, whereas RoSeq still works well.
Those samples also verify the capacity of RoSeq for handling
the ambiguous labels, compared with the base method. For
example, the ground truth label for “California” in the first

sample is “MISCELLANEOUS,” but it is “ORGANIZATION”
in the second and third samples. Although RoSeq yields the
correct predictions, the base model predicts the “California”
in all the three samples as “LOCATION” label type (which
is the most frequent label for this word. In the fourth sam-
ple, “Newmont-Santa” and “Fe” are combined to be labeled
as “MISCELLANEOUS.” However, the base model assigns
two different label types for “Newmont-Santa” and “Fe” as
“MISCELLANEOUS” and “ORGANIZATION,” respectively.
In the last testing sample, “Santa” and “Fe” are merged to
represent a “LOCATION.” Nevertheless, the base model mis-
takenly predicts “Santa Fe” as “ORGANIZATION.” In con-
trast, RoSeq makes the correct predictions for the last two
testing samples. We have similar observations in other testing
samples. Generally, we can conclude that RoSeq is more
effective than the base method to reduce the wrong predictions.

V. CONCLUSION

To address the, namely, label imbalance and noisy data
problems, we develop a RoSeq model for NER. To the end,
we introduce three components, LACRF, FL, and AT, to handle
the proposed issues. Extensive experiments show the supe-
riority of RoSeq over existing models on CoNLL-NER and
WNUT-NER benchmark data sets without external resources.
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