Parameter-Efficient Conversational Recommender System as a Language Processing Task

Mathieu Ravaut, Hao Zhang, Lu Xu, Aixin Sun, Yong Liu

mathieuj001@e.ntu.edu.sg

Conversational Recommendation through Language Models

Conversational Recommender Systems (**CRS**) are designed to jointly tackle two sub-tasks: 1) generating natural language responses to interact with the user (**conversation**); and 2) recommending desirable items to user based on dialogue context (**recommendation**). CRS can be classified into *attribute-based* methods: collecting use preference on items attributed to narrow down the item recommendation space ; and *generation-based* methods: acquiring feedback from users through natural language exchanges. We focus on generation-based CRS.

Jointly modelling language generation and item recommendation is not straightforward. Prior work typically use a knowledge graph (**KG**) containing items semantics and a graph neural network (GNN) to learn items representations. Language generation is learned through a language model (**LM**). The GNN and LM being optimized independently, the whole system suffers from inconsistency between items representations and words representations. Attempts to fix this inconsistency, like UNICRS, require training for multiple stages to unify both semantic spaces. Recent work MESE bypasses the need for a KG, but still fine-tunes several pre-trained LMs (two DistilBERT and a GPT-2).

In this work, we propose the first truly unified CRS: fine-tuning a single LM (GPT-2) through a single training stage.

Model

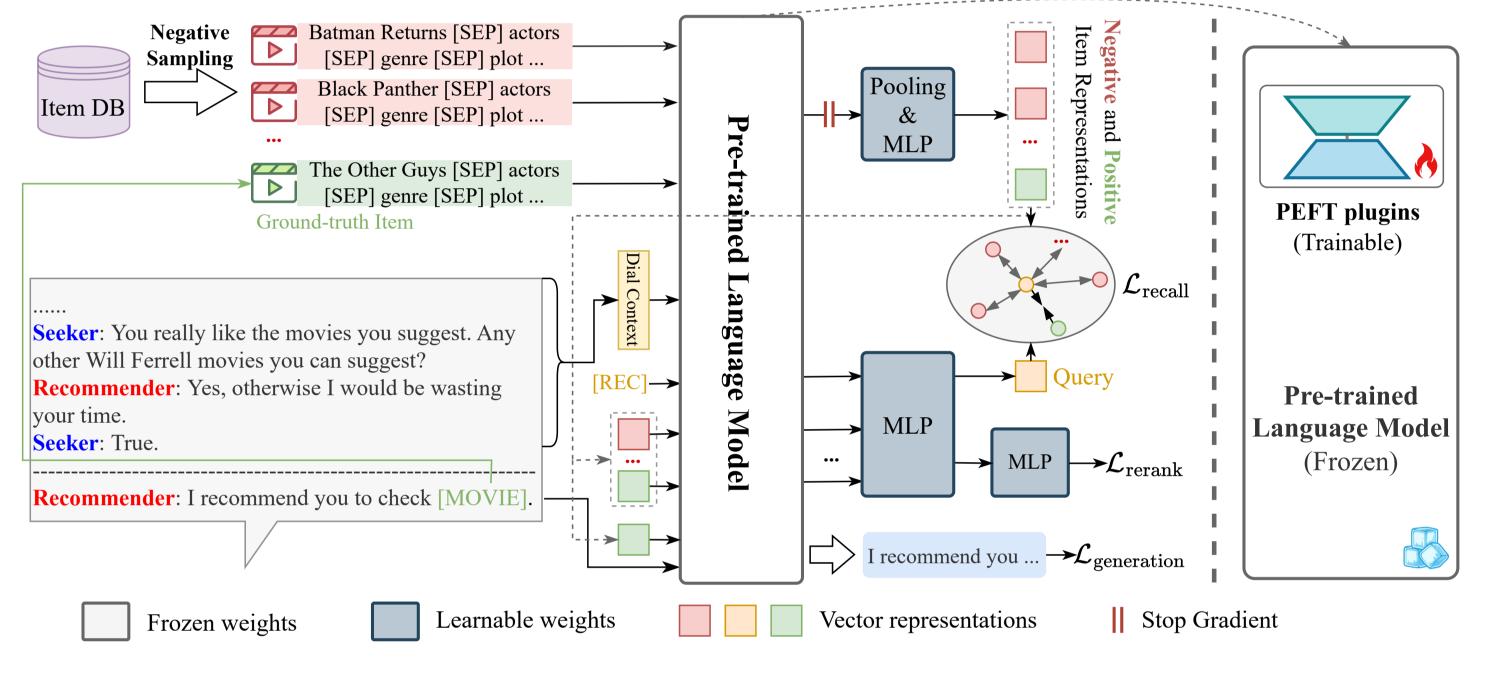


Fig 1. Overall architecture of our system PECRS.

Each movie item is associated with a **textual description** in the template: *Movie Title* [*SEP*] *Actors* [*SEP*] *Director*(*s*) [*SEP*] *Genre* [*SEP*] *Plot* We use the LM to encode each movie, through an item head and pooling layer:

Experimental Setup

- We experiment on ReDial and INSPIRED datasets.
- We train with AdamW and learning rate 3.10⁻⁵, warming up one epoch.
- M_{train} is set to 150, M_{inference} to 700.
- Losses are balanced with $\alpha = 0.15$, $\beta = 0.85$ and $\gamma = 1.00$.

Recommendation Results

Model	Metadata		Model Properties		ReDial			INSPIRED						
		Reviews	Description	Extra Model	PEFT	Rounds	R@1	R@10	R@50	Unique	R@1	R@10	R@50	Unique
ReDial (Li et al., 2018)	×	×	×	1	X	3	2.4	14.0	32.0	_	_	_	_	_
KBRD (Chen et al., 2019)	1	X	×	 ✓ 	X	2	3.0	16.3	33.8			_		
KGSF (Zhou et al., 2020a)	1	×	×	1	×	3	3.9	18.3	37.8	_	_	_	_	_
KECRS (Zhang et al., 2022)	1	×	×	1	×	2	2.3	15.7	36.6	_	_	_	_	_
BARCOR (Wang et al., 2022b)	1	×	×	1	×	1	2.5	16.2	35.0	_	_	_	_	_
UniCRS (Wang et al., 2022c)	1	×	×	1	1	3	5.1	22.4	42.8	_	9.4	25.0	41.0	_
RecInDial (Wang et al., 2022a)	1	×	×	1	×	1	3.1	14.0	27.0	_	_	_	_	_
VRICR (Zhang et al., 2023b)	1	×	×	1	×	3	5.7	25.1	41.6	_	_	_	_	_
RevCore (Lu et al., 2021)	1	1	×	<i>_</i>	X	2	6.1	23.6	45.4	_		_		
C^2 -CRS (Zhou et al., 2022)	1	1	×	1	×	2	5.3	23.3	40.7	_	_	_	_	_
MESE (Yang et al., 2022)	X	X	1	 ✓ 	X	1	5.6	25.6	45.5		4.8	13.5	30.1	
PECRS-small	×	×	1	×	1	1	4.7	20.8	40.5	463	5.4	16.1	33.3	34
PECRS-medium	×	X	1	×	1	1	5.8	22.5	41.6	634	5.7	17.9	33.7	72

Table 1. Recommendation results on ReDial and INSPIRED.

Model	Time/ batch (s) R	Rec.	Conv. RG-1 Dist@2	Removed	None	Title	Actor(s)	Director(s)	Genre(s)	Plot
			Re-1 Diste2	D@50	22.2	20.0	26.0	225	20 5	20.7

$$\boldsymbol{v}_j = h_{\mathrm{item}}(\boldsymbol{w}^T \cdot \boldsymbol{I}_j).$$

The LM is enhanced with special tokens: [ITEM], [SEP], [REC], [REC_END].

PECRS-small	6.1	40.5	<u>463</u>	36.28	0.745
w/o Recall loss	6.1	19.3	21	37.67	0.678
w/o Rerank loss	6.1	12.2	87	36.50	0.745
w/o Generation loss	6.1	39.2	451	7.76	11.907
w/o Neg. sharing (batch)	8.6	39.8	291	36.40	0.747
w/o Neg. sharing (tasks)	9.1	40.8	434	35.98	0.727
w/o Item pooling	6.1	39.6	530	36.60	0.748
w/o Item head	6.1	37.9	453	36.33	0.726
w/o Metadata (just title)	4.2	35.8	384	36.38	0.765

Table 2. Ablation on ReDial.

R@5033.329.826.9<u>32.5</u>30.520.7Table 3. Ablation on the textual description fields

on INSPIRED with PECRS-small.

PECRS-medium reaches comparable Recall to SOTA fine-tuned LMs.

Training

The dialogue context is represented by the [REC] token appended to the concatenation of utterances: $D_t = [\bar{u}_1, \dots, \bar{u}_{t-1}, v_{rec}]$,

For each context, we randomly sample M negative items. We use an **NCE approach** to bring closer the dialogue context representation d_t and the positive item v_p , where f is an MLP:

$$\mathcal{E}_{D_t} = rac{e^{f(oldsymbol{d}_t)^{ op}} \odot oldsymbol{v}_p}}{e^{f(oldsymbol{d}_t)^{ op}} \odot oldsymbol{v}_p} + \sum_{(oldsymbol{d}_t,oldsymbol{v}_j') \sim oldsymbol{\mathcal{N}}} e^{f(oldsymbol{d}_t)^{ op}} \odot oldsymbol{v}_j'},$$

The recall loss learns to **retrieve the positive item**:

$$\mathcal{L}_{ ext{recall}} = -rac{1}{|\mathcal{D}|}\sum_{D_t\in\mathcal{D}}\log(\mathcal{E}_{D_t}).$$

We then **re-rank** items (following MESE) with a score predicting if the item is the positive one, conditioning on the context + item representations:

Conversation Results

Model	Refe	rence-k	oased	Reference-free					
Mouel	RG-1	RG-2	F-1	PPL	Dist@2	Dist@3	Dist@4		
C ² -CRS	_	_	_	_	0.163	0.291	0.417		
UniCRS	_	_	_	_	0.492	0.648	0.832		
RecInDial	_	_	_	_	0.518	0.624	0.598		
MESE	_	_	_	12.9	0.822	1.152	1.313		
PECRS-small	36.28	14.77	86.04	9.89	0.745	1.462	2.132		
PECRS-medium	36.86	15.27	86.36	8.98	0.820	1.552	2.154		

Aspect	MESE	PECRS-small	Tie
Fluency	28.00 (1.63)	46.67 (5.91)	25.33 (6.24)
Relevancy	26.33 (2.62)	46.00 (0.82)	27.67 (2.87)
Table 5	5. Human ev	valuation of g	enerated
responses	on ReDial,	with 3 humar	volunteers

Table 4. Conversation results on ReDial.

PECRS-medium reaches SOTA conversation performance.

Analysis

Model		ŀ	Conv.			
Wibuci	R@1	R@10	R@50	Unique	RG-1	RG-2
PECRS-small	5.4	16.1	33.3	34	29.72	8.26
Llama-2-7B-chat	9.3	9.3	9.3	26	19.88	2.88
Vicuna-1.5-7B	8.2	8.2	8.2	23	21.18	3.50

Decoding Strategy	Refere	nce-based	Reference-free			
Decouning Strategy	RG-1	RG-2	Dist@2	Dist@3	Dist@4	
Greedy decoding	38.54	16.25	0.208	0.311	0.390	
Beam search	38.23	16.83	0.235	0.353	0.444	
Diverse beam search (diversity=0.5)	39.94	17.30	0.190	0.287	0.361	
Diverse beam search (diversity=1.0)	40.29	17.40	0.179	0.264	0.320	
Diverse beam search (diversity=1.5)	40.07	17.23	0.172	0.246	0.290	
Top-k sampling (k=25)	33.54	14.40	0.593	1.177	1.806	
Top-k sampling (k=50)	33.37	14.17	0.647	1.300	1.989	
Top-k sampling (k=75)	33.48	14.15	0.644	1.303	1.992	
Nucleus sampling (p=0.90)	36.35	16.04	0.329	0.555	0.760	
Nucleus sampling (p=0.95)	36.44	16.02	0.351	0.594	0.804	
Nucleus sampling (p=0.99)	36.60	16.07	0.352	0.593	0.809	

$$\mathcal{L}_{ ext{rerank}} = rac{1}{|\mathcal{D}|} \sum_{D_t \in \mathcal{D}} f_{ ext{XE}}(m{r},m{Y}),$$

The dialogue generation is trained with a standard **next-token prediction**:

 $\mathcal{L}_{ ext{gen}} = -rac{1}{|\mathcal{D}|} \sum_{D_t \in \mathcal{D}} rac{1}{n} \sum_{j=1}^n \log(p_{ heta}(w_j | w_{1:(j-1)}, ilde{m{D}}_t).$

The final loss is a linear combination of all 3 losses:

 $\mathcal{L} = \alpha \times \mathcal{L}_{\text{recall}} + \beta \times \mathcal{L}_{\text{rerank}} + \gamma \times \mathcal{L}_{\text{gen}},$

We optimize the LM layers through **LoRA modules**.

During training, we append the ground truth item for response generation. We **share negative items for recall and re-rank losses**. At inference, we append the top re-ranked item to the context to prompt response generation. Table 6. Comparison to zero-shot instruction-tuned LLMs on INSPIRED.

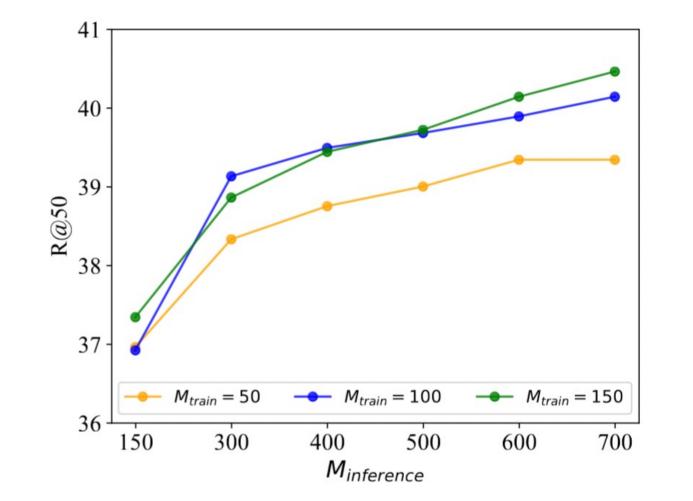
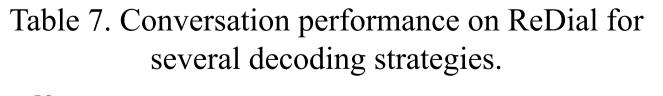
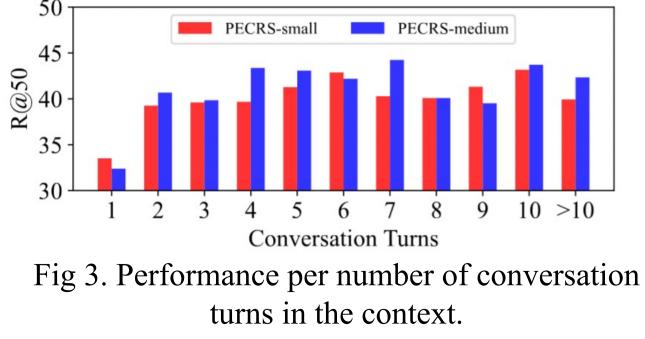


Fig 2. Influence of the M parameter (number of negatives). We decouple M between training and inference. Higher M value performs better.





We advocate for reference-based conversation evaluation (Table 7).

Nanyang Technological University, Singapore