The temporal sentence grounding in video (TSGV) task is to locate a temporal moment from an untrimmed video, to match a language query, i.e., a sentence. Without considering bias in moment annotations (e.g., start and end positions in a video), many models tend to capture statistical regularities of the moment annotations, and do not well learn cross-modal reasoning between video and language query. In this paper, we propose two debiasing strategies, data debiasing and model debiasing, to force a TSGV model to capture cross-modal interactions. Data debiasing performs data oversampling through video truncation to balance moment temporal distribution in train set. Model debiasing leverages video-only and query-only models to capture the distribution bias, and forces the model to learn cross-modal interactions. Using VSLNet as the base model, we evaluate impact of the two strategies on two datasets that contain out-of-distribution test instances. Results show that both strategies are effective in improving model generalization capability. Equipped with both debiasing strategies, VSLNet achieves best results on both datasets.