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Conversational Recommender Systems (CRS)

Conversational Recommender Systems (CRS) jointly generate a
natural language response to the user (conversation task) and
recommend a list of items (recommendation task).

CRS approaches can be roughly divided into two categories :
Attribute-based CRS : collect user preference on items attributes.
Generation-based CRS : acquire feedback from users through
language and generate natural responses.

We are focusing on generation-based CRS in this work.
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Challenges in CRS

CRS are challenging to build because item recommendation and
language generation are two tasks of very different nature.

A long line of work relies on knowledge graphs to learn items
representation [1, 24, 23]. Unfortunately, there are a few issues :

Because they are learned separately, word representations and
items representations are semantically misaligned.
KG consist in an external source of knowledge, which may not be
readily available in certain inference setups.
This approach neglects rich text information available for items.
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Unifying CRS through language models

The recent MESE [21] approach uses pre-trained language models to
learn items representations, and integrates them within the language
response, bypassing the need for knowledge graph. However, it still
relies on several models (two DistilBERT [15] and a GPT-2 [14]).

Overall, there does not exist yet a truly unified CRS model :
UniCRS [20] uses a language model and a knowledge graph, and
requires three training stages.
BARCOR [19] and RecInDial [18] train in a single stage, but still
need both a language model and a knowledge graph.
MESE [21] discards the knowledge graph and still trains in a
single stage, but relies on several pre-trained language models.
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Proposal

In this work, we push simplicity and unification to its finest and solve
the CRS task with a single pre-trained language model (LM)
fine-tuned in a single stage, without using a knowledge
graph (KG).

Besides, through parameter-efficient fine-tuning, we only update a
small fraction of parameters.
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Dialogue Modeling

Let I = {I1, I2, . . . , INitem} be the item database with Nitem items.

Let D = {D1, D2, . . . , DNdial} be the dataset with Ndial dialogues.

Let D = {ut}nutt
t=1 be a dialogue with nutt utterances.

Conditioning on the dialogue history Dt = {ui}t−1
i=1, CRS predicts :

The current utterance ut = {wj}nj=1, with n tokens.
The set of recommended items It, which may be empty.

Utterances are produced by the seeker or the recommender.
CRS only predicts the recommender utterances.

W use a decoder-only Transformer LM enhanced with special tokens :
“[ITEM]”, “[SEP]”, “[REC]” and “[REC_END]”.
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Items Representation

We use the LM for both dialogue response and items representation.

Each movie item is described with a text in the template “Movie title
[SEP] Actors [SEP] Director(s) [SEP] Genre(s) [SEP] Plot”.

We add an item head hitem and learnable pooling weight w to the
LM. The j-th item representation is :

vj = hitem(wT · Ij). (1)

where Ij is the LM contextual representation of the description.
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Context Representation

For each utterance of the context Dt = {ui}t−1
i=1 we obtain contextual

representation with the LM : ui = [ci,1, . . . , ci,n].

Item names are replaced by the “[ITEM]” special token.

If the utterance is from the speaker, it becomes
ūi = ũi = [vsep,vj ,vsep,ui].

If it is from the recommender, it becomes
ūi = ũi = [vrec,vj ,vrec_end,ui].

If there is no recommended item, it remains unchanged ūi = ui.

Dialogue representation is Dt = [ū1, . . . , ūt−1,vrec], and we use the
output of the last “[REC]” token, noted dt.
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Recommendation task (1/2)

We use a contrastive learning approach [4, 13, 12] to bring closer
the query dt and the positive item vp ; while pushing apart dt and M
sampled negative items {v′

j}Mj=1.

Lrecall = − 1

|D|
∑

Dt∈D
log(EDt). (2)

where :

EDt =
ef(dt)

⊤⊙vp

ef(dt)⊤⊙vp +
∑

(dt,v′
j)∼N

ef(dt)⊤⊙v′
j

, (3)

where where f is a projection head MLP.

We stop the gradients of LM and only optimize the pooling (w)
and MLP layers (hitem, f).
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Recommendation task (2/2)

To refine item selection, we use a re-ranking approach.

We concatenate the context and all items, [Dt,vp,v
′
1, . . . ,v

′
M ].

This input is fed into LM then MLP f , with attention mask blocking
attention between items, yielding representations [qp, q1, . . . , qM ].

Another MLP layer g is applied to compute the final item scores as
r = [g(qp), g(q1), . . . , g(qM )] = [rp, r1, . . . , rM ].

Items are re-ranked through a cross-entropy loss :

Lrerank =
1

|D|
∑

Dt∈D
fXE(r,Y ), (4)

where Y = [1, 0, . . . , 0] and fXE denotes cross-entropy loss.
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Response generation task

If ut contains an item to be recommended, it is appended to the
context :

D̃t = [ū1, . . . , ūt−1,vrec,vp,vrec_end]. (5)

otherwise, D̃t = [ū1, . . . , ūt−1].

Response generation is optimized by the standard next-token
prediction objective :

Lgen = − 1

|D|
∑

Dt∈D

1

n

n∑
j=1

log(pθ(wj |w1:(j−1), D̃t). (6)
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Parameter-efficiency

We keep the backbone LM frozen, and instead add LoRA [7] layers to
be updated.
This prevents catastrophic forgetting of the LM’s text generation
capability, while adapting it to the CRS task [8, 22].

The only learnable weights are : task-specific MLP layers f , g, hitem,
pooling weights w, and the special tokens embeddings.

Our model is dubbed Parameter-Efficient Conversational
Recommender System (PECRS).
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Training

We train in a singe-stage end-to-end manner by minimizing the
following loss :

L = α× Lrecall + β × Lrerank + γ × Lgen, (7)

During training :
Sample Mtrain negative items, and share them across losses
Lrecall and Lrerank and across batch items.
Append the ground-truth item to the dialogue context.
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Inference

During inference :
Encode every single item.
Retrieve the closest Minference items to the dialogue query via
f(dt)

⊤ ⊙ vj .
Re-rank them and output the highest score one as prediction.
Append the predicted item to the context.
The presence of “[ITEM]” in the generated response assesses
recommendation.
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Experimental Setup

We apply PECRS to movie recommendation on ReDial [9] and
INSPIRED [5] datasets.

For the backbone LM, we use GPT-2 (PECRS-small) and
GPT-2-medium (PECRS-medium).

We train with AdamW and LR as 3e− 5, warming up one epoch.

We set Mtrain = 150 for training and Minfer = 700 for inference.

We balance losses with α = 0.15, β = 0.85, and γ = 1.0.
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Evaluation Setup

We measure recommendation performance with Recall@K (R@K)
metric, taking K ∈ {1, 10, 50} and Unique, the number of unique
recommended items throughout the test set.

We measure conversation with Perplexity (PPL) (fluency),
Distinct@K (Dist@K) with K ∈ {2, 3, 4} (diversity), F-1 score of the
presence of ”[ITEM]” (recommendation decision) and ROUGE-K
(RG-K), taking K ∈ {1, 2} (closeness to the ground truth).
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Recommendation Results

PECRS-medium is on par with previous leading approaches (RevCore
[11], MESE [21]) for Recall@1 on ReDial.

Scaling up LM size improves recall and items diversity (Unique).
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Conversation Results

PECRS-medium reaches SOTA generation capability on ReDial.

Which is confirmed by a human evaluation for fluency and relevancy.
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Comparison with LLMs

We compare against popular instruction-tuned LLMs used in
zero-shot [16, 2] on INSPIRED :

LLMs used in this fashion tend to always recommend among the same
small subset of items.

It is not straightforward how to score multiple items with LLMs in
zero-shot.
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Analysis

Different decoding methods [17, 3, 6] yield very inconsistent Dist@K
results.

We advocate for using reference-based methods like ROUGE [10],
which are much more stable.
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Analysis

The M parameter controlling the number of negatives is crucial.

A higher M is better, albeit at greater computational cost.
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Analysis

Beyond the first turn, recall is relatively stable w.r.t the number of
turns in the context.
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Conclusion

In brief, we have introduced PECRS, a simple model fine-tuning a
pre-trained LM in a single stage for the CRS task.

Our model uses GPT-2 for both response generation and item
encoding. This is rendered possible through :

Projection heads for items and items re-ranking.
Stop gradient operator on the backbone.
Parameter-efficiency LoRA.

Optimization is streamlined through re-using the same negative
samples across batch items and losses.
For conversation evaluation, we advocate for not using the
popular Dist@K metrics, and use reference-based metrics instead.
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