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What is Dialogue Relation Extraction (RE)?

Dialogue relation extraction (RE) is to predict the relation type of two entities mentioned in a
dialogue. Each dialogue usually include multiple entity pairs.

An Example in DialogRE Dataset (Dialogue-level Relation Extraction)

$1: Hey Pheebs. Argument pair Trigger Relation type

S2: Hey! R1 (Frank, S2) brother | per:siblings

S1: Any sign of your brother? R2 (S2, Frank) brother | per:siblings

S2: No, but he’s always late. R3 (S2, Pheebs) | none per:alternate names
S1: | thought you only met him once? R4 (S1, Pheebs) | none Unanswerab

S2: Yeah, | did. | think it sounds y’know big
sistery, y’know, ‘Frank’s always late.

S1: Well relax, he’ll be here..

ERE NANYANG
TECHNOLOGICAL Agency for
UNIVERSITY Science, Technology

SINGAPORE v and Research




Motivation

Among multiple pairs of entities, the relations mentioned in the same dialog often

interrelate with each other to some extent.

For example, Richard and Monica in the
first few utterances show two possible
relations, i.e. positive impression or
girl/boyfriend. The last utterance indicates
that Monica is girlfriend of S2; hence
Richard and Monica can only be related by
positive_impression.
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S1:  Where the hell have you been?!

S2: I was making a coconut phone with the profes-
SOr.

S1:  Richard told Monica he wants to marry her!

S2:  What?!

S1:  Yeah! Yeah, I've been trying to find ya to tell to
stop messing with her and maybe I would have
if these damn boat shoes wouldn’t keep flying
off!

S2:  My-—Oh my God!

S1: I know! They suck!!

S2:  He’'s not supposed to ask my girlfriend to marry
him! I'm supposed to do that!

Argument pair Relation type
R1 (Monica, S2) girl/boyfriend
R2 (Richard, Monica) positive_impression




SimpleRE: Overview

Relation
Refinement Gate
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SimpleRE: BERT Relation Token Sequence

BERT Relation Token Sequence

> Given a sequence X, which contains a set of subject entities £, = {El, E2, ..., E'} and a set of object entities
E, ={EL EZ, ...,E'}, we form a BRS as input to BERT: BRS = < [CLS], X, [SEP], E}, [CLS], E}, [SEP],
EY, [CLS], E}, [SEP] >
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SimpleRE: Relational Refinement Gate

compute confidence score s, to decide whether
we further refine h, for a more task-specific
representation.
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Experiments: Dialogue-level Relation Extraction

» Dataset
= DialogRE is the first human-annotated dialogue-level RE dataset.

» Baseline Models and Experimental Setup

= GDPNet: a recent BERT-based model, and it achieves best performance on
dialogue Relation Extraction.

= BERTs: speaker-aware modification of BERT

= We also include popular baseline models: CNN, LSTM, BiLSTM and BERT
models.

= We use the same input format and hyperparameter settings as in BERTs
and GDPNet.
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Experiments: Dialogue-level Relation Extraction

» Results on DialogRE v1

Model | F1+6

CNN [1] 48.0+1.5
LSTM [1] 47.440.6
BiLSTM [1] 48.6+1.0
AGGCN [11] 46.2

LSR [12] 44 .4

DHGAT [3] 56.1

BERT [4] 58.54+2.0
BERTS [1] 61.2+0.9
GDPNet [2] 64.941.1
SimpleRE (Ours) | 66.310.7

SimpleRE achieves the best performance on DialogRE v1.
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Experiments: Dialogue-level Relation Extraction

» Results on DialogRE v2

Model | English V2 (}"1 4 6) | Chinese (F'1 + §)
BERT [4] 60.6:0.5 61.6:+0.4
BERTs [1] 61.8+0.6 63.8-£0.6
GDPNet [2] 64.3+1.1 62.2:40.9
SimpleRE (Ours) | 66.7+0.7 | 65.2:+1.1

SimpleRE achieves the best performance on DialogRE English v2 and DialogRE Chinese.
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Experiments: Dialogue-level Relation Extraction

» Average training time per epoch

Model ’ Average Time (mins)
BERT [4] 4.7
BERTS [1] 4.7
GDPNet [2] 12.6
SimpleRE (Ours) ‘ 0.9

SimpleRE is the fastest BERT-based model
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Experiments: Dialogue-level Relation Extraction

» Ablation Study

Model Fl+4+o

SimpleRE 66.3+0.7
SimpleRE w/o BRS 60.4+0.9
SimpleRE w/ BRS-v2 62.8£1.1
SimpleRE w/ BRS-v3 63.5+0.8
SimpleRE w/o RRG 65.5+0.7

Ablation study shows the effectiveness of the two main components in SimpleRE,
i.e., BERT Token Sequence and Relational Refinement Gate.
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Experiments: Sentence-level Relation Extraction

> Dataset

= TACRED is a widely used large-scale sentence-level relation extraction dataset.

= TACREV dataset, released recently, corrects the wrong labels in the
development and test sets of TACRED.

» Baseline Models and Experimental Setup

= GDPNet is the best performing sentence-level Relation Extraction model
without incorporating any external knowledge and parser.

= We also include RNN- and graph-based models.
= We use the same input format and hyperparameter settings as in GDPNet.
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Experiments: Sentence-level Relation Extraction

> Results on TACRED and TACREV

Model ’ TACRED TACREV
LSTM [14] 62.7 70.6
PA-LSTM [14] 65.1 74.3
C-AGGCN [11] | 68.2 75.5
LST-AGCN [15] | 68.8 -
SpanBERT [16] | 70.8 78.0
GDPNet [2] 70.5 80.2
SimpleRE (Ours) | 71.7 80.7
KnowBERT [17] ‘ 71.5 79.3

Without external resources, SimpleRE achieves best performance on both
TACRED and TACREV
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Conclusion

» We propose SimpleRE, a simple yet effective model for dialogue relation extraction.
» SimpleRE achieves the best performance on DialogRE v1, DialogRE v2 and DialogRE Chinese.

» SimpleRE can also be easily adapted to sentence-level relation extraction.
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