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What is Natural Language Video Localization (NLVL)

Input:
» Alanguage query
» Anuntrimmed video

____———>|Language Query: Men are celebrating and an old man gives a trophy to a young boy.
E—

Timeline (second)

1 ]
0.00 127.52 139.20 194.69

Output: The Ground Truth Moment

» Atemporal moment
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Existing Works for NLVL

1. Ranking based methods, e.g., CTRL, Gao et al., 2017, ICCV.
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3. Regression based methods, e.g., ABLR, Yuan et al., 2019, AAAI.
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2. Anchor based methods, e.g., TGN, Chen et al 2018 EMINLP.
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http://openaccess.thecvf.com/content_ICCV_2017/papers/Gao_TALL_Temporal_Activity_ICCV_2017_paper.pdf
https://arxiv.org/pdf/1804.07014.pdf
https://arxiv.org/pdf/1901.06829.pdf
https://www.aclweb.org/anthology/D18-1015.pdf

A Typical Span-based QA Framework

Span-based QA

» Input: text passage and language query.
» Output: word phrase as answer span.
-

Feature "D'\/ Feature
\

Encoder v Encoder
. . -s‘::keedr M%dcel FFN FFN
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NANYANG QANet for span-based QA, Yu et al., 2018, ICLR. VSLBase for NLVL.
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https://arxiv.org/pdf/1804.09541.pdf

Similarities between NLVL and Span-based QA

NLVL shares significant similarities

Visual features of video Textual features of text passage with span-based QA by treating:
E—— — 1
:_ Answer Span Answer Span |
- I] [l I] |] |] |] I] [l Same I] [l [l |] |] |] I] I] | | Target moment €= Answer span
g duddd - ddduudugygd B
E: cOnvNets] " Feature Extractor | Word
e e = = l Embeddings

)

Passage: ... Other legislation followed,

including the Migratory Bird Conservation

Act of 1929, a 1937 treaty prohibiting the Video <> Text passage

hunting of right and gray whales...
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Differences between NLVL and Span-based QA

+»* Video is continuous and causal relations between video events are usually adjacent.
» Many events in a video are directly correlated and can even cause one another.

+¢ Natural language is inconsecutive and words in a sentence demonstrate syntactic structure
» Causalities between word spans or sentences are usually indirect and can be far apart.

+* Changes between adjacent video frames are usually very small, while adjacent word tokens
may carry distinctive meanings.

+» Compared to word spans in text, human is insensitive to small shifting between video frames.
» Small offsets between video frames do not affect the understanding of video content.
» The differences of a few words or even one word could change the meaning of a sentence.
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Span-based QA Framework for NLVL

Visual Features Textual Features
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Conditioned Predict the spans of start and end
_ Span Predictor | boundaries of target moment.
744

Capture the cross-modal interac-
tions between visual and textual
features.
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A single transformer block to
encode contextual information.
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Project visual and textual features
into same dimension.
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VSLBase

(Standard span-based QA framework)



Video Span-based Localizing Network (VSLNet)

> Query-Guided Highlighting (QGH) extends the boundaries of
foreground to cover its antecedent and consequent contents.

» The target moment and its adjacent contexts are regarded as
foreground; the rest as background.

» With QGH, VSLNet is guided to search for the target moment
within a highlighted region.

| Query: He uses the tool to take off all of the nuts one by one.
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Illustration of foreground and background of visual features.

a is the ratio of foreground extension.
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Query-Guided Highlighting is introduced
to address the two differences between
NLVL and span-based QA.
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Bridging the Gap between NLVL and Span-based QA

g1 hQ Vf —> A
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The structure of Query-Guided Highlighting

» The longer region provides additional contexts for locating answer span.

» The highlighted region helps the network to focus on subtle differences between video frames.
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Evaluation Metrics

s,: ground truth moment corresponding to text query g4,
“clip c”: predicted moment.

» Union: the total length of both s; and “clip ¢”

» Intersection: the overlap between s; and “clip ¢”

. . Intersection
> Intersection over Union: IoU = —nion

Evaluation Metrics:
» Rank@n,loU = pu
» mloU (mean IoU)
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Figure from Gao et al. 2017, ICCV.
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http://openaccess.thecvf.com/content_ICCV_2017/papers/Gao_TALL_Temporal_Activity_ICCV_2017_paper.pdf

Benchmark Datasets

» Charades-STA is obtained from Charades dataset; the videos are about daily indoor activities.

» ActivityNet Captions contains about 20k open-domain videos taken from ActivityNet dataset.

» TACoS is selected from MPIl Cooking Composite Activities dataset.

Dataset Domain # Videos (train/val/test) # Annotations Nvocad  Lvideo Lguery Lmoment Dmoment
Charades-STA  Indoors 5,338/ — /1,334 12,408/ — /3,720 1,303 30.59s  7.22 8.22s 3.59s
ActivityNet Cap  Open 10,009/ — /4,917 37,421/ — /17,505 12,460 117.61s 14.78 36.18s  40.18s
TACoS Cooking 75/27/25 10,146 /4,589/4,083 2,033 287.14s 10.05 5.45s 7.565
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Compared Methods

» Ranking based (multimodal matching) methods: CTRL (Gao et al., 2017), ACRN (Liu et al., 2018), ACL
(Ge et al., 2019), QSPN (Xu et al., 2019), SAP (Chen et al., 2019)

> Anchor based methods: TGN (Chen et al., 2018), MAN (Zhang et al., 2019)

» Reinforcement learning based methods: SM-RL (Wang et al., 2019), RWM-RL (He et al., 2019)

> Regression based methods: ABLR (Yuan et al., 2019), DEBUG (Lu et al., 2019)

» Span based methods: [-Net (Chen et al., 2019), ExCL (Ghosh et al., 2019)
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http://openaccess.thecvf.com/content_ICCV_2017/papers/Gao_TALL_Temporal_Activity_ICCV_2017_paper.pdf
https://doi.org/10.1145/3209978.3210003
https://arxiv.org/pdf/1811.08925.pdf
https://arxiv.org/pdf/1804.05113.pdf
http://yugangjiang.info/publication/19AAAI-actionlocalization.pdf
https://www.aclweb.org/anthology/D18-1015
http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhang_MAN_Moment_Alignment_Network_for_Natural_Language_Moment_Retrieval_via_CVPR_2019_paper.pdf
https://zpascal.net/cvpr2019/Wang_Language-Driven_Temporal_Activity_Localization_A_Semantic_Matching_Reinforcement_Learning_Model_CVPR_2019_paper.pdf
https://arxiv.org/pdf/1901.06829.pdf
https://arxiv.org/pdf/1804.07014.pdf
https://doi.org/10.18653/v1/D19-1518
http://forestlinma.com/welcome_files/Jingyuan_Chen_Localizing_Natural_Language_In_Videos_AAAI_2019.pdf
https://www.aclweb.org/anthology/N19-1198

Comparison with State-of-the-Arts

Model IoU=0.3 IoU=0.5 IoU=0.7 mloU

> VSLNet significantly outperforms all baselines C3D model without fine-tuning as visual feature extractor
by a large margin over all evaluation metrics. CTRL - 23.63 8.89 -
ACL-K - 30.48 12.20 -
QSPN 54.70 35.60 15.80 -
» The improvements of VSLNet are more SAP ; 27 49 13.36 }
significant under more strict metrics. SM-RL - 24.36 11.17 -
RWM-RL - 36.70 - -
MAN - 46.53 22.72 -
» VSLBase outperforms all compared baselines DEBUG 54.95 37.39 17.69 36.34
over IoU = 0.7. VSLBase 61.72 40.97 24.14 42.11
VSLNet 64.30 47.31 30.19 45.15

C3D model with fine-tuning on Charades dataset
ExCL 65.10 44.10 23.30 -
VSLBase 68.06 50.23 30.16 47.15
VSLNet 70.46 54.19 35.22 50.02

Results (%) of “R@1; IoU = u” and “mloU” compared with
SOTA on Charades-STA. Best results are in bold and second best
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Comparison with State-of-the-Arts

Similar observations hold on ActivityNet Captions and TACoS datasets.
> VSLNet outperforms all baseline methods.
» VSLBase shows comparable performance with baseline methods.

» Adopting span-based QA framework for NLVL is promising.

Model IoU =0.3 IoU =0.5 IoU = 0.7 mloU

Model IoU =0.3 ToU=0.5 IoU=0.7 mloU CTRL 18.32 13.30 - -

TGN 21.77 18.90 = =

TGN 4551 2847 - - ACRN 19.52 14.62 - -
ABLR 55.67 36.79 - 36.99 ABLR 19.50 9.40 i 13.40

RWM-RL - 36.90 - - ACL-K 2417  20.01 - -
QSPN 45.30 27.70 13.60 - L-Net : i i 13.41

ExCL* 63.00 43.60 24.10 - SAP ) 18.94 i )

DEBUG 55.91 39.72 - 39.51 SM.RL 50.95 15.95 i ]
VSLBase  58.18 39.52 2321  40.56 DEBUG  23.45 11.79 i 16.03
VSLNet 63.16 43.22 26.16 4319 VSLBase  23.59 20.40 16.65 20.10
Results (%) of “R@1; IoU = u” and “mloU” VSLNet  29.61 24.27 20.03 24.11
compared with SOTA on ActivityNet Captions. Results (%) of “R@1; IoU = u” and “mloU”

compared with SOTA on TACoS.
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Why we Select Transformer Block and Context-Query Attention?

Module IoU = 0.3 TIoU = 0.5 IoU = 0.7 mloU
BiLSTM + CAT 61.18 43.04 26.42 42.83
CMF + CAT 63.49 44 .87 27.07 44.01
BiLSTM + COA  65.08 46.94 28.55  45.18
|_CMF + CQA 68.06 50.23 30.16 47.15|

Comparison between models with alternative modules in
VSLBase on Charades-STA.

» CMF shows stable superiority over BiLSTM
regardless of other modules.

» CQA surpasses CAT whichever encoder is
used.
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Qualitative Analysis

» The localized moments by VSLNet are closer to ground truth than that by VSLBase.

» The start and end boundaries predicted by VSLNet are softly constrained in the highlighted regions computed
by QGH.

Language Query: He shows a water bottle he has along with a brush, and uses the brush to remove snow from the dash window of a car and the
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Conclusion

» Span-based QA framework works well on NLVL task and is able to achieve state-of-the-art
performances.

» With QGH, VSLNet effectively addresses the two major differences between video and text and
improve the performance.

» Explore span-based QA framework for NLVL is a promising direction.
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Thank You!

Code at: https://github.com/IsaacChanghau/VSLNet



https://github.com/IsaacChanghau/VSLNet

