



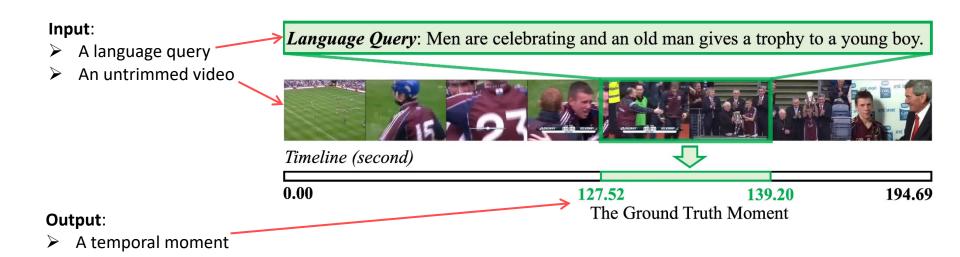
# Span-based Localizing Network for Natural Language Video Localization

Hao Zhang<sup>1,2</sup>, Aixin Sun<sup>1</sup>, Wei Jing<sup>3</sup>, Joey Tianyi Zhou<sup>2</sup>

<sup>1</sup>School of Computer Science and Engineering, Nanyang Technological University, Singapore <sup>2</sup>Institute of High Performance Computing, A\*STAR, Singapore <sup>3</sup>Institute of Infocomm Research, A\*STAR, Singapore

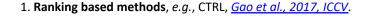
ACL 2020

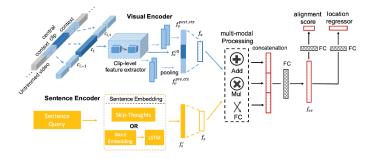
#### What is Natural Language Video Localization (NLVL)



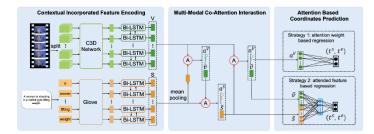


## **Existing Works for NLVL**





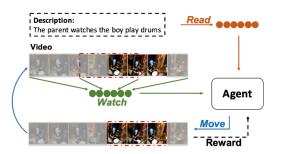
#### 3. Regression based methods, e.g., ABLR, Yuan et al., 2019, AAAI.





Grounder

#### 4. Reinforcement learning based methods, e.g., RWM-RL, He et al., 2019, AAAI.



2. Anchor based methods, e.g., TGN, Chen et al., 2018 EMNLP.

### A Typical Span-based QA Framework

#### Span-based QA

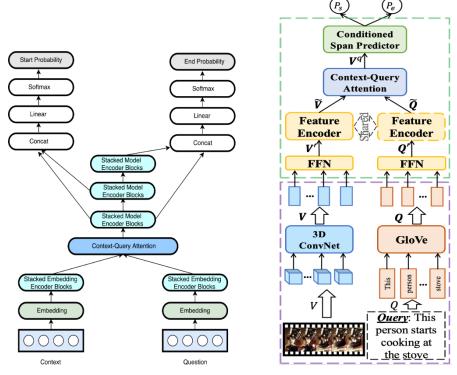
- Input: text passage and language query.
- Output: word phrase as answer span.

#### NLVL

- Input: untrimmed video and language query.
- Output: temporal moment as answer span.

A different perspective:

 $\clubsuit \quad \mathsf{NLVL} \to \mathsf{Span-based} \ \mathsf{QA}$ 

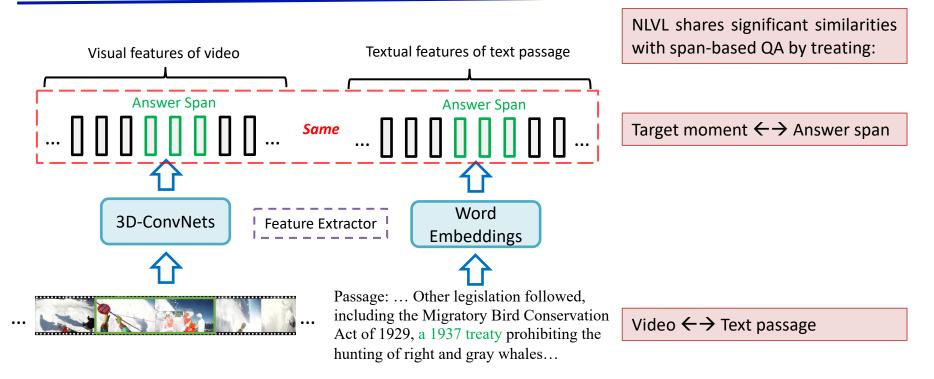


QANet for span-based QA, <u>Yu et al., 2018, ICLR</u>.

VSLBase for NLVL.



#### Similarities between NLVL and Span-based QA



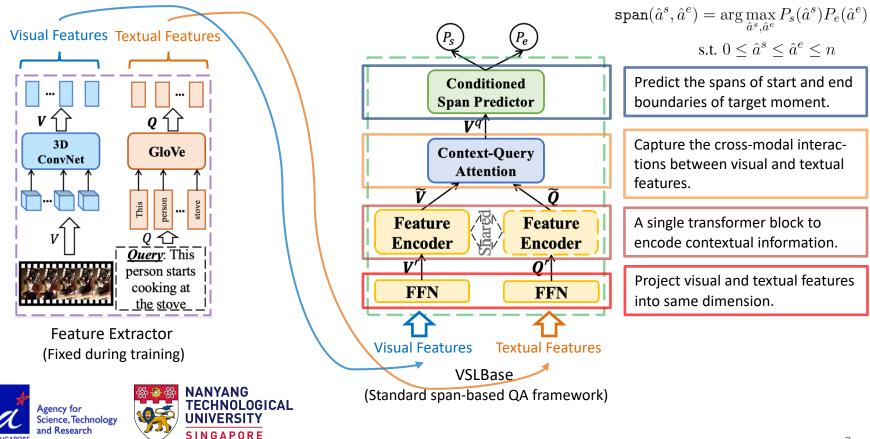


#### **Differences between NLVL and Span-based QA**

- Video is continuous and causal relations between video events are usually adjacent.
  - Many events in a video are directly correlated and can even cause one another.
- ✤ Natural language is inconsecutive and words in a sentence demonstrate syntactic structure
  - > Causalities between word spans or sentences are usually indirect and can be far apart.
- Changes between adjacent video frames are usually very small, while adjacent word tokens may carry distinctive meanings.
- Compared to word spans in text, human is insensitive to small shifting between video frames.
  - Small offsets between video frames do not affect the understanding of video content.
  - > The differences of a few words or even one word could change the meaning of a sentence.



#### **Span-based QA Framework for NLVL**



## Video Span-based Localizing Network (VSLNet)

- Query-Guided Highlighting (QGH) extends the boundaries of foreground to cover its <u>antecedent</u> and <u>consequent</u> contents.
- The target moment and its adjacent contexts are regarded as foreground; the rest as background.
- With QGH, VSLNet is guided to search for the target moment within a highlighted region.

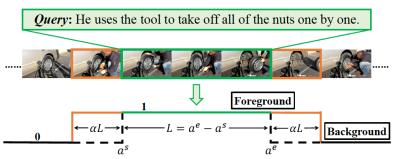
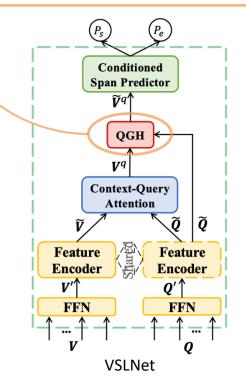


Illustration of foreground and background of visual features.  $\alpha$  is the ratio of foreground extension.



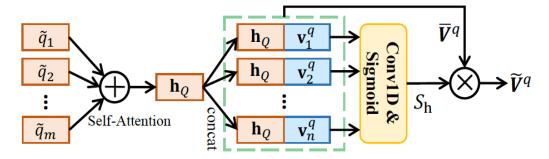
Query-Guided Highlighting is introduced to address the two differences between NLVL and span-based QA.



8

#### Bridging the Gap between NLVL and Span-based QA

- Foreground  $\rightarrow$  1, background  $\rightarrow$  0.
- ✤ QGH is a binary classification module.



The structure of Query-Guided Highlighting

- > The longer region provides additional contexts for locating answer span.
- > The highlighted region helps the network to focus on subtle differences between video frames.



#### **Evaluation Metrics**

 $s_1$ : ground truth moment corresponding to text query  $q_1$ , "*clip c*": predicted moment.

- > **Union**: the total length of both  $s_1$  and "*clip c*"
- > Intersection: the overlap between  $s_1$  and "*clip c*"
- > Intersection over Union:  $IoU = \frac{Intersection}{Union}$

**Evaluation Metrics:** 

- $\succ$  Rank@n, IoU =  $\mu$
- mloU (mean IoU)



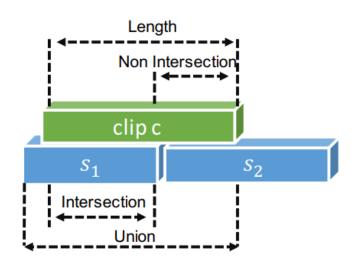


Figure from *Gao et al. 2017, ICCV*.

#### **Benchmark Datasets**

- > Charades-STA is obtained from Charades dataset; the videos are about *daily indoor activities*.
- > ActivityNet Captions contains about 20k *open-domain* videos taken from ActivityNet dataset.
- > **TACoS** is selected from MPII *Cooking Composite Activities* dataset.

| Dataset         | Domain  | # Videos (train/val/test) | # Annotations         | $N_{ m vocab}$ | $\bar{L}_{video}$ | $\bar{L}_{query}$ | $\bar{L}_{moment}$ | $\Delta_{moment}$ |
|-----------------|---------|---------------------------|-----------------------|----------------|-------------------|-------------------|--------------------|-------------------|
| Charades-STA    | Indoors | 5,338/-/1,334             | 12,408/-/3,720        | 1,303          | 30.59s            | 7.22              | 8.22s              | 3.59s             |
| ActivityNet Cap | Open    | 10,009/-/4,917            | 37,421/-/17,505       | 12,460         | 117.61s           | 14.78             | 36.18s             | 40.18s            |
| TACoS           | Cooking | 75/27/25                  | 10, 146/4, 589/4, 083 | 2,033          | 287.14s           | 10.05             | 5.45s              | 7.56s             |



- Ranking based (multimodal matching) methods: CTRL (Gao et al., 2017), ACRN (Liu et al., 2018), ACL (Ge et al., 2019), QSPN (Xu et al., 2019), SAP (Chen et al., 2019)
- Anchor based methods: TGN (<u>Chen et al., 2018</u>), MAN (<u>Zhang et al., 2019</u>)
- Reinforcement learning based methods: SM-RL (Wang et al., 2019), RWM-RL (He et al., 2019)
- Regression based methods: ABLR (<u>Yuan et al., 2019</u>), DEBUG (<u>Lu et al., 2019</u>)
- Span based methods: L-Net (Chen et al., 2019), ExCL (Ghosh et al., 2019)



#### **Comparison with State-of-the-Arts**

- VSLNet significantly outperforms all baselines by a large margin over all evaluation metrics.
- The improvements of VSLNet are more significant under more strict metrics.
- > VSLBase outperforms all compared baselines over IoU = 0.7.

| Model                                                     | IoU = 0.3 ] | $\mathrm{lo}\mathrm{U}=0.$ | 5 Io | $\mathbf{b}\mathbf{U}=0.$ | 7 mIoU |  |
|-----------------------------------------------------------|-------------|----------------------------|------|---------------------------|--------|--|
| C3D model without fine-tuning as visual feature extractor |             |                            |      |                           |        |  |
| CTRL                                                      | -           | 23.63                      |      | 8.89                      | -      |  |
| ACL-K                                                     | -           | 30.48                      |      | 12.20                     | -      |  |
| QSPN                                                      | 54.70       | 35.60                      |      | 15.80                     | -      |  |
| SAP                                                       | -           | 27.42                      |      | 13.36                     | -      |  |
| SM-RL                                                     | -           | 24.36                      |      | 11.17                     | -      |  |
| RWM-RL                                                    | -           | 36.70                      |      | -                         | -      |  |
| MAN                                                       | -           | 46.53                      |      | 22.72                     | -      |  |
| DEBUG                                                     | 54.95       | $\overline{37.39}$         |      | 17.69                     | 36.34  |  |
| VSLBase                                                   | 61.72       | 40.97                      |      | 24.14                     | 42.11  |  |
| VSLNet                                                    | 64.30       | <b>47.31</b>               |      | 30.19                     | 45.15  |  |
| C3D model with fine-tuning on Charades dataset            |             |                            |      |                           |        |  |

| C3D model with fine-tuning on Charades dataset |              |       |       |       |  |  |
|------------------------------------------------|--------------|-------|-------|-------|--|--|
| ExCL                                           | 65.10        | 44.10 | 23.30 | -     |  |  |
| VSLBase                                        | <u>68.06</u> | 50.23 | 30.16 | 47.15 |  |  |
| VSLNet                                         | <b>70.46</b> | 54.19 | 35.22 | 50.02 |  |  |

Results (%) of "R@1; IoU =  $\mu$ " and "mIoU" compared with SOTA on Charades-STA. Best results are in **bold** and second best <u>underlined</u>.



### **Comparison with State-of-the-Arts**

Similar observations hold on ActivityNet Captions and TACoS datasets.

- > VSLNet **outperforms** all baseline methods.
- > VSLBase shows **comparable performance** with baseline methods.

| Model   | IoU = 0.3    | IoU = 0.5    | IoU = 0.7 | mIoU         |
|---------|--------------|--------------|-----------|--------------|
| TGN     | 45.51        | 28.47        | -         | -            |
| ABLR    | 55.67        | 36.79        | -         | 36.99        |
| RWM-RL  | -            | 36.90        | -         | -            |
| QSPN    | 45.30        | 27.70        | 13.60     | -            |
| ExCL*   | <u>63.00</u> | <b>43.60</b> | 24.10     | -            |
| DEBUG   | 55.91        | 39.72        | -         | 39.51        |
| VSLBase | 58.18        | 39.52        | 23.21     | 40.56        |
| VSLNet  | 63.16        | 43.22        | 26.16     | <b>43.19</b> |

#### > Adopting span-based QA framework for NLVL is promising.

Results (%) of "R@1; IoU =  $\mu$ " and "mIoU" compared with SOTA on ActivityNet Captions.



| Model   | IoU = 0.3 | IoU = 0.5 | IoU = 0.7 | mIoU  |
|---------|-----------|-----------|-----------|-------|
| CTRL    | 18.32     | 13.30     | -         | -     |
| TGN     | 21.77     | 18.90     | -         | -     |
| ACRN    | 19.52     | 14.62     | -         | -     |
| ABLR    | 19.50     | 9.40      | -         | 13.40 |
| ACL-K   | 24.17     | 20.01     | -         | -     |
| L-Net   | -         | -         | -         | 13.41 |
| SAP     | -         | 18.24     | -         | -     |
| SM-RL   | 20.25     | 15.95     | -         | -     |
| DEBUG   | 23.45     | 11.72     | -         | 16.03 |
| VSLBase | 23.59     | 20.40     | 16.65     | 20.10 |
| VSLNet  | 29.61     | 24.27     | 20.03     | 24.11 |

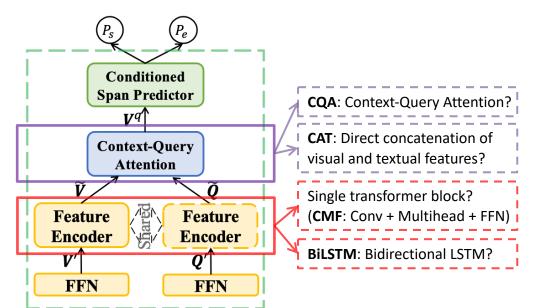
Results (%) of "R@1; IoU =  $\mu$ " and "mIoU" compared with SOTA on TACoS.

### Why we Select Transformer Block and Context-Query Attention?

| Module       | IoU = 0.3 | IoU = 0.5 | IoU = 0.7 | mIoU  |
|--------------|-----------|-----------|-----------|-------|
| BiLSTM + CAT | 61.18     | 43.04     | 26.42     | 42.83 |
| CMF + CAT    | 63.49     | 44.87     | 27.07     | 44.01 |
| BiLSTM + CQA | 65.08     | 46.94     | 28.55     | 45.18 |
| CMF + CQA    | 68.06     | 50.23     | 30.16     | 47.15 |

Comparison between models with alternative modules in VSLBase on Charades-STA.

- CMF shows stable superiority over BiLSTM regardless of other modules.
- CQA surpasses CAT whichever encoder is used.

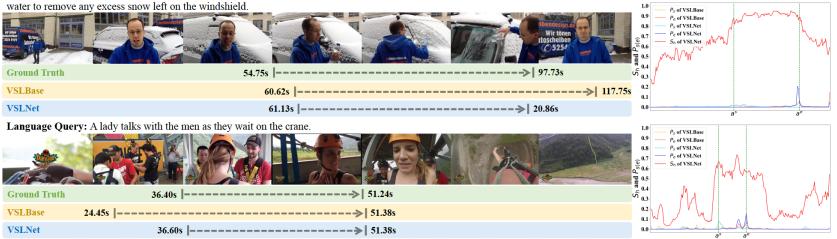




#### **Qualitative Analysis**

- > The localized moments by VSLNet are closer to ground truth than that by VSLBase.
- The start and end boundaries predicted by VSLNet are softly constrained in the highlighted regions computed by QGH.

Language Query: He shows a water bottle he has along with a brush, and uses the brush to remove snow from the dash window of a car and the





Visualization of predictions by VSLBase and VSLNet on ActivityNet Captions dataset.

- Span-based QA framework works well on NLVL task and is able to achieve state-of-the-art performances.
- With QGH, VSLNet effectively addresses the two major differences between video and text and improve the performance.
- > Explore span-based QA framework for NLVL is a promising direction.







# Thank You!

## Code at: <a href="https://github.com/IsaacChanghau/VSLNet">https://github.com/IsaacChanghau/VSLNet</a>