

Deep N-ary Error Correcting Output Codes

Hao Zhang¹, Joey Tianyi Zhou^{1,*}, Tianying Wang¹, Ivor W. Tsang², Rick Siow Mong Goh¹

¹ Institute of High Performance Computing, A*STAR, Singapore ² AAII, University of Technology Sydney, Australia * Corresponding Author

MobiMedia 2020

Ensemble Learning for Multi-class Classification

- Ensemble learning is the process by which multiple models are strategically generated and combined to solve a particular computational intelligence problem.
- An ensemble-based system
 - Combination of diverse models, henceforth classifiers.
 - > Improve the classification performance and reduce the likelihood of an unfortunate selection.
- Ensemble Method:
 - > Data-independent ensemble model, e.g. ECOC.

✤ ECOC

- > An ensemble method designed for multi-class classification problem.
- > A meta method which combines many **binary classifiers**.

ECOC coding approach aims to construct the ECOC matrix

 $\Lambda \in \{-1,1\}^{N_C \times N_L}$

Where N_C is the number of classes and N_L is the code length, and its elements are randomly chosen as either -1 or 1.

	M_1	M_2	M_3	M_4	M_5	M_6
C_1	-1	1	-1	1	1	1
C_2	1	1	-1	1	1	1
C_3	1	1	1	1	-1	-1
C_4	-1	1	1	1	-1	1
C_5	1	-1	1	1	-1	-1
C_6	1	1	1	-1	-1	1
C_7	-1	1	-1	-1	1	-1
C_8	1	1	-1	-1	1	1
C_9	1	1	1	-1	1	-1

An example of 6-bit ECOC for a 9-class problem

N-ary Error Correcting Output Codes (N-ary ECOC)

- ✤ N-ary ECOC
 - An extension of the traditional ECOC methods.
 - > Decompose the original classes into N meta-class, where $3 \le N \le N_c$.
 - > A meta method which combines many **sub-multiclass classifiers**.

Advantages:

- More general.
- Larger row separation.
- Lower column correlation.

An example of 6-bit N-ary ECOC for a 9-class problem

Traditional ECOC methods:

- Based on the pre-defined hand-craft features.
- Focus on how to ensemble the results of base learners on these features.

- Deep N-ary ECOC:
 - Integrate ECOC framework with deep neural networks.
 - Do we necessarily independently train all the deep base learners from scratch for all the situation? 1.
 - 2. Whether the *N*-ary ECOC framework still has advantages over other data-independent ensemble approaches with deep neural network?
 - Any new suggestion on the choice of the meta-class number N and number of base learners N_L ? 3.

- Parameter Sharing Strategy
 - > No parameter share.
 - Partial parameter share.
 - Full parameter share.
 - > The no parameter sharing strategy contains most parameters (N_n) , then the partial sharing strategy (N_p) and the full sharing strategy (N_f) is least, say, $N_n > N_p > N_f$.
- ✤ For the remaining two questions, we investigate through the experiments.

Conduct the experiments on 4 image datasets and 2 text datasets

- Image datasets: MNIST, CIFAR-10, CIFAR-100, FLOWER-102.
- > Text datasets: Text REtrieval Conference (TREC) and Stanford Sentiment Treebank (SST) datasets

Image Dataset								
Dataset	Image Size	# Train Sample	# Dev Sample	# Test Sample	# Classes (N_C)			
MNIST	28×28	60,000	N/A	10,000	10			
CIFAR-10	32×32	50,000	N/A	10,000	10			
CIFAR-100	32×32	50,000	N/A	10,000	100			
FLOWER-102	256×256	6,552	818	819	102			
Text Dataset								
Dataset	Avg. Sent. Len.	# Train Sample	# Dev Sample	# Test Sample	# Classes (N_C)			
TREC	10	5,500	N/A	500	6			
SST	18	11,855	N/A	2,210	5			

- Deep Leaning Model for Image Classification
 - LeNet for the MNIST dataset.
 - AlexNet for the FLOWER-102 dataset (pre-trained on ILSVRC dataset).
 - CIFAR-CNN for CIFAR-10/100 datasets.

Deep Leaning Model for Text Classification

- Character-level CNN learned the character features to represent a word from the character sequences of such word.
- The word-level Bi-LSTM performs to learn contextual representations.
- The self-attention mechanism encodes word feature sequence to a single sentence representation.

\clubsuit Summarization of Tested *N* and *N*_L for experiments.

Dataset	# Classes (N_C)	Tested # Meta-Class (N)	Tested # Base Learners* (N_L)
MNIST	10	2, 4, 5, 8, 10	60
CIFAR-10	10	2, 4, 5, 8, 10	100
CIFAR-100	100	2, 5, 10, 30, 50, 75, 95, 100	100
FLOWER-102	102	2, 3, 5, 10, 20, 40, 60, 80, 90, 95, 102	60
TREC	6	2, 3, 4, 5, 6	60
SST	5	2, 3, 4, 5	60

* It indicates the maximal number of classifiers is used for training.

Ensemble accuracies of different methods on benchmark datasets.

- Compared to single model, the improvement ratio of N-ary ECOC is inverse relation with single model performance.
- > The N-ary ECOC scheme outperforms ECOC and ERI ensemble methods on most image and text datasets.

Dataset	Mathad	Single Medal	Ensemble Model*			
	Ivietilou	Single Model	ERI	ECOC	N-ary ECOC (N)	
MNIST	LeNet [32]	$98.98 \pm 0.07\%$	$99.11 \pm 0.11\%$	$99.23\pm0.08\%$	$\textbf{99.57}\pm0.09\%$	
CIFAR-10	CIFAR-CNNs	$87.12 \pm 0.43\%$	$90.54 \pm 0.31\%$	$89.37 \pm 0.54\%$	$\textbf{91.95}\pm0.24\%$	
CIFAR-100	CIFAR-CNNs	$61.50 \pm 0.57\%$	$69.57 \pm 0.29\%$	$34.26\pm2.42\%$	$\textbf{69.94} \pm 0.32\%$	
FLOWER-102	AlexNet [15]	$83.12\pm0.29\%$	$86.32 \pm 0.60\%$	$77.05\pm0.73\%$	$\textbf{87.94} \pm 0.28\%$	
TREC	Bi-LSTMs	$90.50 \pm 0.12\%$	$94.80 \pm 0.09\%$	$95.80 \pm 0.08\%$	$\textbf{95.60} \pm 0.10\%$	
SST	Bi-LSTMs	$44.17\pm0.92\%$	$48.69\pm0.18\%$	$48.91 \pm 0.26\%$	$\textbf{50.86} \pm 0.13\%$	

* Here N_L are 60, 100, 100, 60, 60 and 60, respectively, for the ensemble models from top to bottom row. While N are 3, 4, 95, 95, 3, 4, respectively, for the N-ary ECOC.

ERI: ensemble of random initialization

Agency for Science, Technology and Research

SINCAPORE

\clubsuit Evaluation on the Effect of Meta-class Number *N*.

UNIVERSITY OF TECHNOLOGY, SYDNEY

- > For dataset with small number of N_c , the performances of ensemble models with different N are relatively stable.
- ▶ the performance of ensemble models with different N fluctuates significantly on the datasets with a large value of N_c .

(a) Datasets with small value of N_c

Experiments

\clubsuit Evaluation on the Effect of Base Learner Number N_L .

> Smaller number of base learners are required for dataset with small N_c than that of large N_c to reach the optimal ensemble accuracies generally.

Detect	N	# of Base Learners (N_L)							
Dataset	11	10	20	30	45	50	60	80	100
MNIST	3	99.14%	99.20%	99.35%	99.48%	99.57%	99.57%	-	-
CIFAR-10	4	87.45%	89.76%	91.78%	91.83%	91.82%	91.92%	91.95%	91.93%
CIFAR-100	95	67.94%	69.12%	69.11%	69.33%	69.34%	69.46%	69.67%	69.94%
FLOWER-102	95	86.06%	86.45%	86.45%	87.06%	87.16%	87.94%	87.46%	87.59%
TREC	3	93.80%	94.00%	95.20%	95.20%	95.60%	95.60%	95.50%	95.60%
SST	4	46.74%	48.19%	49.41%	50.18%	50.45%	50.86%	-	-

Experiments

Comparison with Three Parameter Sharing Strategies.

- > Take SST dataset as an example.
- > When the number of meta-class N is small, both partial and no share models improve significantly with the increase of N_L . The partial share generally outperforms the no and full share except when N_L is less.
- > When the number of meta-class N is large, the performance of the three strategies are stable, and the improvement of no share is most significant with the increase of N_L .

14

Experiments

- Comparison with Three Parameter Sharing Strategies.
 - > Take CIFAR-100 dataset as an example.
 - ECOC model with no share strategy fails to achieve satisfactory performance.
 - ➢ For N-ary ECOC with small N, partial share strategy outperforms no and full share strategies.
 - > For the ERI model, no share strategy is comparable to partial share when N_L is small. It always performs best when N_L increases, meanwhile, the performance of full share is worst.

Conclusion

- For the dataset with small N_C :
 - * No share model is better than or equal to the partial share model, thus no share strategy is suggested.
 - When the number of meta-class N is large, these three strategies perform stable.
- ✤ For the dataset with large N_C :
 - When the number of meta-class N is small, the performance of partial share model is the best.
 - when the number of meta-class N is large, no share strategy outperforms partial and full share strategies in most cases. Thus no share strategy should be preferred.
- ✤ If the number of meta-class is N large, the performance between three sharing strategies is marginal. Then full share could be suggested due to its parameter efficiency.

Thank You!